2024届山东省荣成市第十四中学八年级数学第二学期期末联考试题含解析_第1页
2024届山东省荣成市第十四中学八年级数学第二学期期末联考试题含解析_第2页
2024届山东省荣成市第十四中学八年级数学第二学期期末联考试题含解析_第3页
2024届山东省荣成市第十四中学八年级数学第二学期期末联考试题含解析_第4页
2024届山东省荣成市第十四中学八年级数学第二学期期末联考试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山东省荣成市第十四中学八年级数学第二学期期末联考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.甲、乙两车从A地出发,沿同一路线驶向B地.甲车先出发匀速驶向B地,40min后,乙车出发,匀速行驶一段时间后,在途中的货站装货耗时半小时.由于满载货物,为了行驶安全,速度减少了50km/h,结果与甲车同时到达B地.甲乙两车距A地的路程y(km)与乙车行驶时间x(h)之间的函数图象如图所示,则下列说法中正确的有()①;②甲的速度是60km/h;③乙出发80min追上甲;④乙刚到达货站时,甲距B地180km.A.4个 B.3个 C.2个 D.1个2.小高从家门口骑车去离家4千米的单位上班,先花3分钟走平路1千米,再走上坡路以0.2千米/分钟的速度走了5分钟,最后走下坡路花了4分钟到达工作单位,若设他从家开始去单位的时间为t(分钟),离家的路程为y(千米),则y与t(8<t≤12)的函数关系为()A.y=0.5t(8<t≤12)B.y=0.5t+2(8<t≤12)C.y=0.5t+8(8<t≤12)D.y="0."5t-2(8<t≤12)3.如图:一个长、宽、高分别为4cm、3cm、12cm的长方体盒子能容下的最长木棒长为()A.11cmB.12cmC.13cmD.14cm4.下图为正比例函数的图像,则一次函数的大致图像是()A. B. C. D.5.如图,矩形ABCD的顶点A,C分别在直线a,b上,且a∥b,∠1=50°,则∠2的度数为()A.30° B.40° C.50° D.60°6.如图,经过点B(1,0)的直线y=kx+b与直线y=4x+4相交于点A(m,),则kx+b<4x+4的解集为()A.x> B.x< C.x<1 D.x>17.我国古代用勾、股和弦分别表示直角三角形的两条直角边和斜边,如图由四个全等的直角三角形和一个小正方形拼成一个大正方形,数学家邹元治利用该图证明了勾股定理,现已知大正方形面积为9,小正方形面积为5,则每个直角三角形中勾与股的差的平方为()A.4 B.3 C.2 D.18.下列说法正确的是()A.的相反数是 B.2是4的平方根C.是无理数 D.计算:9.下列关于一次函数的说法中,错误的是()A.函数图象与轴的交点是B.函数图象自左至右呈下降趋势,随的增大而减小C.当时,D.图象经过第一、二、三象限10.下列各点在函数y=3x+2的图象上的是()A.(1,1) B.(﹣1,﹣1) C.(﹣1,1) D.(0,1)二、填空题(每小题3分,共24分)11.如图,在△ABC中,BC=9,AD是BC边上的高,M、N分别是AB、AC边的中点,DM=5,DN=3,则△ABC的周长是__.12.已知方程x2+mx﹣3=0的一个根是1,则它的另一个根是_____.13.不等式组的解集是x>4,那么m的取值范围是_____.14.如图,中,,,,为的中点,若动点以1的速度从点出发,沿着的方向运动,设点的运动时间为秒(),连接,当是直角三角形时,的值为_____.15.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,∠ACD=3∠BCD,E是斜边AB的中点,则∠ECD的度数为__________度.16.如图,P是矩形ABCD的边AD上一个动点,矩形的两条边AB、BC的长分别为6和8,那么点P到矩形的两条对角线AC和BD的距离之和是__.17.平面直角坐标系中,A是y=﹣(x>0)图象上一点,B是x轴正半轴上一点,点C的坐标为(0,﹣2),若点D与A,B,C构成的四边形为正方形,则点D的坐标_____.18.将点A(1,-3)向左平移3个单位长度,再向上平移5个单位长度后得到的点A′的坐标为______________.三、解答题(共66分)19.(10分)已知,在四边形ABCD中,点E、点F分别为AD、BC的中点,连接EF.(1)如图1,AB∥CD,连接AF并延长交DC的延长线于点G,则AB、CD、EF之间的数量关系为;(2)如图2,∠B=90°,∠C=150°,求AB、CD、EF之间的数量关系?(3)如图3,∠ABC=∠BCD=45°,连接AC、BD交于点O,连接OE,若AB=,CD=2,BC=6,则OE=.20.(6分)求证:矩形的对角线相等要求:画出图形,写出已知,求证和证明过程21.(6分)(1)求不等式组的整数解.(2)解方程组:22.(8分)已知四边形ABCD是矩形,对角线AC和BD相交于点F,DE//AC,AE//BD.(1)求证:四边形DEAF是菱形;(2)若AE=CD,求∠DFC的度数.23.(8分)如图,D是△ABC内一点,连接DB、DC、DA,并将AB、DB、DC、AC的中点E、H、G、F依次连接,得到四边形EHGF.(1)求证:四边形EHGF是平行四边形;(2)若BD⊥CD,AD=7,BD=8,CD=6,求四边形EHGF的周长.24.(8分)为了从甲、乙两名选手中选拔出一个人参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,为了比较两人的成绩,制作了如下统计图表.甲、乙射击成绩统计表平均数(环)中位数(环)方差命中10环的次数甲70乙1甲、乙射击成绩折线统计图(1)请补全上述图表(请直接在表中填空和补全折线图);(2)如果规定成绩较稳定者胜出,你认为谁应胜出?说明你的理由;(3)如果希望(2)中的另一名选手胜出,根据图表中的信息,应该制定怎样的评判规则?为什么?25.(10分)涡阳某童装专卖店在销售中发现,一款童装每件进价为元,销售价为元时,每天可售出件,为了迎接“六-一”儿童节,商店决定采取适当的降价措施,以扩大销售增加利润,经市场调查发现,如果每件童装降价元,那么平均可多售出件.(1)若每件童装降价元,每天可售出

件,每件盈利

元(用含的代数式表示);每件童装降价多少元时,能让利于顾客并且商家平均每天能赢利元.26.(10分)如图,菱形ABCD的对角线AC、BD相交于点O,BE∥AC,CE∥DB.求证:四边形OBEC是矩形.

参考答案一、选择题(每小题3分,共30分)1、A【解析】

由线段DE所代表的意思,结合装货半小时,可得出a的值,从而判断出①成立;结合路程=速度×时间,能得出甲车的速度,从而判断出②成立;设出乙车刚出发时的速度为x千米/时,则装满货后的速度为(x-50)千米/时,由路程=速度×时间列出关于x的一元一次方程,解出方程即可得知乙车的初始速度,由甲车先跑的路程÷两车速度差即可得出乙车追上甲车的时间,从而得出③成立;由乙车刚到达货站的时间,可以得出甲车行驶的总路程,结合A、B两地的距离即可判断④也成立.综上可知①②③④皆成立.【详解】∵线段DE代表乙车在途中的货站装货耗时半小时,∴a=4+0.5=4.5(小时),即①成立;40分钟=小时,甲车的速度为460÷(7+)=60(千米/时),即②成立;设乙车刚出发时的速度为x千米/时,则装满货后的速度为(x−50)千米/时,根据题意可知:4x+(7−4.5)(x−50)=460,解得:x=90.乙车发车时,甲车行驶的路程为60×23=40(千米),乙车追上甲车的时间为40÷(90−60)=(小时),小时=80分钟,即③成立;乙车刚到达货站时,甲车行驶的时间为(4+)小时,此时甲车离B地的距离为460−60×(4+)=180(千米),即④成立.综上可知正确的有:①②③④.故选:A.【点睛】本题考查一次函数的应用——行程问题,解决此类题的关键是,要读懂图象,看清横纵坐标所代表的数学量,及每段图象所代表的情况.2、D【解析】试题分析:由题意知小高从家去上班花费的时间为12分钟,当8<t≤12,小高正在走那段下坡路;小高从家门口骑车去离家4千米的单位上班,平路1千米,上坡路0.2×5=1千米,则下坡路长2千米,走下坡路花了4分钟,走下坡路的速度是0.5千米/分钟;若设他从家开始去单位的时间为t(分钟),离家的路程为y(千米),则y与t(8<t≤12)的函数关系为y=2+0.5•(t-8)=0.5t-2考点:求函数关系式点评:本题考查求函数关系式,做此类题的关键是审清楚题,找出题中各量之间的关系3、C【解析】试题分析:∵侧面对角线BC2=32+42=52,∴CB=5m,∵AC=12m,∴AB==13(m),∴空木箱能放的最大长度为13m,故选C.考点:勾股定理的应用.4、B【解析】

根据正比例函数图象所经过的象限,得出k<0,由此可推知一次函数象与y轴交于负半轴且经过一、三象限.【详解】解:∵正比例函数y=kx(k≠0)的图象经过二、四象限,∴k<0,∴一次函数y=x+k的图象与y轴交于负半轴且经过一、三象限.故选B.【点睛】本题考查了一次函数图象与比例系数的关系.5、C【解析】

作BF∥a,根据平行线的性质即可求解.【详解】解:作BF∥a,∴∠3=∠1=50°,∵四边形ABCD是矩形,∴∠ABC=∠BCD=90°,∴∠4=40°,∵BF∥a,a∥b,∴BF∥b,∴∠5=∠4=40°,∴∠2=180°﹣∠5﹣90°=50°,故选:C.【点睛】此题主要考查平行线的性质,解题的关键是根据题意作出辅助线进行求解.6、A【解析】

将点A(m,)代入y=4x+4求出m的值,观察直线y=kx+b落在直线y=4x+4的下方对应的x的取值即为所求.【详解】∵经过点B(1,0)的直线y=kx+b与直线y=4x+4相交于点A(m,),∴4m+4=,∴m=-,∴直线y=kx+b与直线y=4x+4的交点A的坐标为(-,),直线y=kx+b与x轴的交点坐标为B(1,0),∴当x>-时,kx+b<4x+4,故选A.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.7、D【解析】

设勾为x,股为y,根据面积求出xy=2,根据勾股定理求出x2+y2=5,根据完全平方公式求出x﹣y即可.【详解】设勾为x,股为y(x<y),∵大正方形面积为9,小正方形面积为5,∴4×xy+5=9,∴xy=2,∵x2+y2=5,∴y﹣x====1,(x﹣y)2=1,故选:D.【点睛】本题考查了勾股定理和完全平方公式,能根据已知和勾股定理得出算式xy=2和x2+y2=5是解此题的关键.8、B【解析】

根据只有符号不同的两个数互为相反数;开方运算,可得答案.【详解】A.只有符号不同的两个数互为相反数,故A正确;B.

2是4的平方根,故B正确;C.=3是有理数,故C错误;D.

=3≠-3,故D错误;故选B.【点睛】本题考查了相反数,平方根,立方根的知识点,解题的关键是熟练掌握相反数,平方根,立方根的定义.9、D【解析】

根据一次函数的图像与性质即可求解.【详解】A.函数图象与轴的交点是,正确;B.函数图象自左至右呈下降趋势,随的增大而减小,正确C.当时,解得,正确D.图象经过第一、二、四象限,故错误.故选D.【点睛】此题主要考查一次函数的图像与性质,解题的关键是熟知一次函数的性质.10、B【解析】A、把(1,1)代入y=3x+2得:左边=1,右边=3×1+2=5,左边≠右边,故本选项错误;B、把(-1,-1)代入y=3x+2得:左边=-1,右边=3×(-1)+2=-1,左边=右边,故本选项正确;C、把(-1,1)代入y=3x+2得:左边=1,右边=3×(-1)+2=-1,左边≠右边,故本选项错误;D、把(0,1)代入y=3x+2得:左边=1,右边=3×0+2=2,左边≠右边,故本选项错误.故选B.点睛:本题考查了一次函数图象上点的坐标特征,点的坐标满足函数关系式的点一定在函数图象上.二、填空题(每小题3分,共24分)11、1【解析】

由直角三角形斜边上的中线求得AB=2DM,AC=2DN,结合三角形的周长公式解答.【详解】解:∵在△ABC中,AD是BC边上的高,M、N分别是AB、AC边的中点,

∴AB=2DM=10,AC=2DN=6,

又BC=9,

∴△ABC的周长是:AB+AC+BC=10+6+9=1.

故答案是:1.【点睛】本题考查三角形的中线性质,尤其是:直角三角形斜边上的中线等于斜边的一半.12、-1【解析】设另一根为,则1·=-1,解得,=-1,故答案为-1.13、m≤1【解析】

根据不等式组解集的求法解答.求不等式组的解集.【详解】不等式组的解集是x>1,得:m≤1.故答案为m≤1.【点睛】本题考查了不等式组解集,求不等式组的解集,解题的关键是注意:同大取较大,同小取较小,小大大小中间找,大大小小解不了.14、2或6或3.1或4.1.【解析】

先求出AB的长,再分①∠BDE=90°时,DE是ΔABC的中位线,然后求出AE的长度,再分点E在AB上和在BA上两种情况列出方程求解即可;②∠BED=90°时,利用∠ABC的余弦列式求出BE,然后分点E在AB上和在BA上两种情况列出方程求解即可.【详解】解:∵∠ACB=90°,∠ABC=60°,BC=2cm,∴AB=BC÷=2÷=4,①∠BDE=90°时,如图(1)∵D为BC的中点,∴DE是ΔABC的中位线,∴AE=AB=×4=2,点E在AB上时,t=2÷1=2秒,点E在BA上时,点E运动的路程为4×2-2=6,t=6÷1=6;②∠BED=90°时,如图(2)BE=BD=×2×=点E在AB上时,t=(4-0.1)÷1=3.1,点E在BA上时,点E运动的路程为4+0.1=4.1,t=4.1÷1=4.1,综上所述,t的值为2或6或3.1或4.1.故答案为:2或6或3.1或4.1.【点睛】掌握三角形的中位线,三角形的中位线平行于第三边并且等于第三边的一半.含30°角的直角三角形的性质:在直角三角形中,30°角所对的直角边等于斜边的一半.15、45°【解析】

求出∠ACD=67.5°,∠BCD=22.5°,根据三角形内角和定理求出∠B=67.5°,根据直角三角形斜边上中线性质求出BE=CE,推出∠BCE=∠B=67.5°,代入∠ECD=∠BCE-∠BCD求出即可.【详解】∵∠ACD=3∠BCD,∠ACB=90°,

∴∠ACD=67.5°,∠BCD=22.5°,

∵CD⊥AB,

∴∠CDB=90°,

∴∠B=180°−90°−22.5°=67.5°,

∵∠ACB=90°,E是斜边AB的中点,

∴BE=CE,

∴∠BCE=∠B=67.5°,

∴∠ECD=∠BCE−∠BCD=67.5°−22.5°=45°.【点睛】本题考查三角形内角和定理和直角三角形斜边上中线性质,解题的关键是掌握三角形内角和定理和直角三角形斜边上中线性质.16、4.1【解析】

首先连接OP,由矩形的两条边AB、BC的长分别为6和1,可求得OA=OD=5,△AOD的面积,然后由S△AOD=S△AOP+S△DOP=OA•PE+OD•PF求得答案.【详解】解:连接OP,

∵矩形的两条边AB、BC的长分别为6和1,

∴S矩形ABCD=AB•BC=41,OA=OC,OB=OD,AC=BD=,

∴OA=OD=5,

∴S△ACD=S矩形ABCD=24,

∴S△AOD=S△ACD=12,

∵S△AOD=S△AOP+S△DOP=OA•PE+OD•PF=×5×PE+×5×PF=(PE+PF)=12,

解得:PE+PF=4.1.

故答案为:4.1.【点睛】此题考查了矩形的性质以及三角形面积问题.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.17、(4,﹣2)或(2,﹣4)或(2﹣2,2﹣2).【解析】

首先依据题意画图图形,对于图1和图2依据正方形的对称性可得到点D的坐标,对于图3可证明△AEC≌△BFA,从而可得到AE=BF,然后由反比例函数的解析式可求得点A的坐标,然后可得到点D的坐标.【详解】如图1所示:当CD为对角线时.∵OC=2,AB=CD=4,∴D(4,﹣2).如图2所示:∵OC=2,BD=AC=4,∴D(2,﹣4).如图3所示:过点A作AE⊥y轴,BF⊥AE,则△AEC≌△BFA.∴AE=BF.设点A的横纵坐标互为相反数,∴A(2,﹣2)∴D(2﹣2,2﹣2).综上所述,点D的坐标为(4,﹣2)或(2,﹣4)或(2﹣2,2﹣2).故答案为:(4,﹣2)或(2,﹣4)或(2﹣2,2﹣2).【点睛】本题主要考查的是正方形的性质,反比例函数的性质,依据题意画出复合题意得图形是解题的关键.18、(-2,2)【解析】

由题意根据点向左平移横坐标减,向上平移纵坐标加求解即可.【详解】解:∵点A(1,-3)向左平移3个单位长度,再向上平移5个单位长度后得到点A′,∴点A′的横坐标为1-3=-2,纵坐标为-3+5=2,∴A′的坐标为(-2,2).故答案为:(-2,2).【点睛】本题考查坐标与图形变化-平移,注意掌握平移时点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.三、解答题(共66分)19、(1)AB+CD=2EF;(2)4EF2=AB2+CD2+AB•CD,证明详见解析;(3).【解析】

(1)根据三角形的中位线和全等三角形的判定和性质解答即可;(2)如图2中,作CK⊥BC,连接AF,延长AF交CK于K.连接DK,作DH⊥CK于H.首先证明△AFB≌△KFC,推出AB=CK,再利用勾股定理,三角形的中位线定理即可解决问题;(3)如图3中,以点B为原点,BC为x轴,建立平面直角坐标系如图所示.想办法求出点E、O的坐标即可解决问题;【详解】解:(1)结论:AB+CD=2EF,理由:如图1中,∵点E、点F分别为AD、BC的中点,∴BF=FC,AE=ED,∵AB∥CD,∴∠ABF=∠GCF,∵∠BFA=∠CFG,∴△ABF≌△GCF(ASA),∴AB=CG,AF=FG,∵AE=ED,AF=FG,∴2EF=DG=DC+CG=DC+AB;∴AB+CD=2EF;(2)如图2中,作CK⊥BC,连接AF,延长AF交CK于K.连接DK,作DH⊥CK于H.∵∠ABF=∠KCF,BF=FC,∠AFB=∠CFK,∴△AFB≌△KFC,∴AB=CK,AF=FK,∵∠BCD=150°,∠BCK=90°,∴∠DCK=120°,∴∠DCH=60°,∴CH=CD,DH=CD,在Rt△DKH中,DK2=DH2+KH2=(CD)2+(AB+CD)2=AB2+CD2+AB•CD,∵AE=ED,AF=FK,∴EF=DK,∴4EF2=DK2,∴4EF2=AB2+CD2+AB•CD.(3)如图3中,以点B为原点,BC为x轴,建立平面直角坐标系如图所示.由题意:A(1,1),B(0,0),D(4,2),∵AE=ED,∴E(,),∵AC的解析式为y=-x+,BD的解析式为y=x,由,解得,∴O(,),∴OE==.故答案为(1)AB+CD=2EF;(2)4EF2=AB2+CD2+AB•CD,证明详见解析;(3).【点睛】本题考查四边形综合题、全等三角形的判定和性质、三角形的中位线定理、解直角三角形、平面直角坐标系、一次函数的应用等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会建立平面直角坐标系解决问题,属于中考压轴题.20、证明见解析.【解析】分析:由“四边形ABCD是矩形”得知,AB=CD,AD=BC,矩形的四个角都是直角,再根据全等三角形的判定原理SAS判定全等三角形,由此,得出全等三角形的对应边相等的结论.详解:已知:四边形ABCD是矩形,AC与BD是对角线,求证:,证明:四边形ABCD是矩形,,,又,≌,,所以矩形的对角线相等点睛:本题考查的是矩形的性质和全等三角形的判定.(1)在矩形中,对边平行相等,四个角都是直角;(2)全等三角形的判定原理AAS;三个判定公理(ASA、SAS、SSS);(3)全等三角形的对应边、对应角都相等.21、(1)解集为,整数解是-1,0;(2)【解析】

(1)先解不等式,再求整数解;(2)运用加减法即可.【详解】解:(1)解不等式①,得解不等式②,得所以所以整数解是-1,0;(2)①ⅹ2-②ⅹ3,得-5解得x=9把x=9代入②,得解得y=2所以,方程组的解是【点睛】考核知识点:解不等式组,解二元一次方程组.运用加减法解方程组是关键;解不等式是重点.22、(1)证明见解析;(2)∠DFC=60【解析】

(1)根据一组邻边相等的平行四边形是菱形证明即可;(2)利用菱形的性质证明ΔFDC为等边三角形可得结论.【详解】解:(1)证明:∵DE∥AC,AE∥BD,∴四边形DEAF为平行四边形∵四边形ABCD为矩形,∴AF=CF=12AC,DF=∴AF=DF=CF∴四边形DEAF为菱形(2)解:∵四边形DEAF为菱形,∴AE=FD∵AE=CD,∴FD=CD,∵FD=CF,∴ΔFDC为等边三角形∴∠DFC=【点睛】本题主要考查了菱形的判定和性质及等边三角形的判定和性质,综合应用两者的判定和性质是解题的关键.23、(1)见解析;(2)1【解析】

(1)证EF是△ABC的中位线,HG是△DBC的中位线,得出EF∥BC,EF=BC,HG∥BC,HG=BC,则EF∥HG,EF=HG,即可得出结论;(2)由勾股定理求出BC=10,则EF=GH=BC=5,由三角形中位线定理得出EH=AD=,即可得出答案.【详解】证明:(1)∵E、F分别是AB、AC的中点,∴EF∥BC,EF=BC.∵H、G分别是DB、DC的中点,∴HG∥BC,HG=BC.∴HG=EF,HG∥EF.∴四边形EHGF是平行四边形.(2)∵BD⊥CD,BD=8,CD=6,∴BC===10,∵E、F、H、G分别是AB、AC、BD、CD的中点,∴EH=FG=AD=3.5,EF=GH=BC=5,∴四边形EHGF的周长=EH+GH+FG+EF=1.【点睛】本题考查了平行四边形的判定与性质、三角形中位线定理以及勾股定理;熟练掌握三角形中位线定理是解题的关键.24、(1)补图见解析;(2)甲胜出,理由见解析;(3)见解析.【解析】

(1)根据折线统计图列举出乙的成绩,计

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论