江苏省苏州工业园区七校联考2024届八年级数学第二学期期末综合测试模拟试题含解析_第1页
江苏省苏州工业园区七校联考2024届八年级数学第二学期期末综合测试模拟试题含解析_第2页
江苏省苏州工业园区七校联考2024届八年级数学第二学期期末综合测试模拟试题含解析_第3页
江苏省苏州工业园区七校联考2024届八年级数学第二学期期末综合测试模拟试题含解析_第4页
江苏省苏州工业园区七校联考2024届八年级数学第二学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省苏州工业园区七校联考2024届八年级数学第二学期期末综合测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.下列关于x的方程中,是分式方程的是().A. B.C. D.3x-2y=12.某班第一组12名同学在“爱心捐款”活动中,捐款情况统计如下表,则捐款数组成的一组数据中,中位数与众数分别是()捐款(元)

10

15

20

50

人数

1

5

4

2

A.15,15 B.17.5,15 C.20,20 D.15,203.矩形、菱形、正方形都具有的性质是()A.对角线相等 B.对角线互相平分 C.对角线互相垂直 D.对角线互相平分且相等4.如果不等式组有解,那么m的取值范围是

)A.m>5

B.m<5

C.m≥5

D.m≤55.一元二次方程2x(x+1)=(x+1)的根是()A.x=0 B.x=1C. D.6.如图,反比例函数的图象与菱形ABCD的边AD交于点,则函数图象在菱形ABCD内的部分所对应的x的取值范围是().A.<x<2或-2<x<- B.-4<x<-1C.-4<x<-1或1<x<4 D.<x<27.已知一次函数的图象如图所示,当时,的取值范围是()A. B. C. D.8.函数的图象可能是()A. B.C. D.9.如图,在菱形中,是菱形的高,若对角线、的长分别是6、8,则的长是A. B. C. D.510.已知:如图,菱形中,对角线、相交于点,且,,点是线段上任意一点,且,垂足为,,垂足为,则的值是A.12 B.24 C.36 D.4811.下列命题的逆命题,是假命题的是()A.两直线平行,内错角相等 B.全等三角形的对应边相等C.对顶角相等 D.有一个角为度的三角形是直角三角形12.下列植物叶子的图案中既是轴对称,又是中心对称图形的是()A. B. C.. D.二、填空题(每题4分,共24分)13.根据如图所示的程序计算函数y的值,若输入的x值是4或7时,输出的y值相等,则b等于(________)14.计算的结果是__________.15.如图,已知正方形纸片ABCD,M,N分别是AD、BC的中点,把BC边向上翻折,使点C恰好落在MN上的P点处,BQ为折痕,则∠PBQ=_____度.16.平面直角坐标系xOy中,点A(x1,y1)与B(x2,y2),如果满足x1+x2=0,y1﹣y2=0,其中x1≠x2,则称点A与点B互为反等点.已知:点C(3,8)、G(﹣5,8),联结线段CG,如果在线段CG上存在两点P,Q互为反等点,那么点P的横坐标xP的取值范围是__.17.分解因式:______________。18.如图,将直线OA向上平移1个单位,得到一个一次函数的图象,那么这个一次函数的关系式是_______.三、解答题(共78分)19.(8分)在平面直角坐标系中,的位置如图所示(每个小方格都是边长为个单位长度的正方形).(1)将沿轴方向向左平移个单位,画出平移后得到的;(2)将绕着点顺时针旋转,画出旋转后得到的.20.(8分)如图,在四边形ABCD中,AB∥CD,AC、BD相交于点O,且O是BD的中点.求证:四边形ABCD是平行四边形.21.(8分)在期末考试来临之际,同学们都进入紧张的复习阶段,为了了解同学们晚上的睡眠情况,现对年级部分同学进行了调查统计,并制成如下两幅不完整的统计图:(其中A代表睡眠时间8小时左右,B代表睡眠时间6小时左右,C代表睡眠时间4小时左右,D代表睡眠时间5小时左右,E代表睡眠时间7小时左右),其中扇形统计图中“E”的圆心角为90°,请你结合统计图所给信息解答下列问题:(1)共抽取了名同学进行调查,同学们的睡眠时间的中位数是小时左右,并将条形统计图补充完整;(2)请你估计年级每个学生的平均睡眠时间约多少小时?22.(10分)如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.23.(10分)分解因式:(1).(2).24.(10分)如图.已知A、B两点的坐标分别为A(0,),B(2,0).直线AB与反比例函数的图象交于点C和点D(1,a).(1)求直线AB和反比例函数的解析式.(2)求∠ACO的度数.25.(12分)如图,矩形OABC在平面直角坐标系中的位置如图所示,点B(﹣3,5),点D在线段AO上,且AD=2OD,点E在线段AB上,当△CDE的周长最小时,求点E的坐标.26.如图,在梯形ABCD中,AD∥BC,AB=4,∠C=30°,点E、F分别是边AB、CD的中点,作DP∥AB交EF于点G,∠PDC=90°,求线段GF的长度.

参考答案一、选择题(每题4分,共48分)1、B【解析】

根据分式方程的定义:分母里含有字母的方程叫做分式方程判断.【详解】A.C.D项中的方程分母中不含未知数,故不是分式方程;B.方程分母中含未知数x,故是分式方程,故选B.【点睛】本题考查的是分式方程,熟练掌握分式方程是解题的关键.2、B【解析】

根据中位数和众数的概念进行判断.【详解】共有数据12个,第6个数和第7个数分别是1,20,所以中位数是:(1+20)÷2=17.5;捐款金额的众数是1.故选B.【点睛】本题考查中位数和众数,将数据从小到大或从大到小排列后,最中间的一个数或两个数的平均数称为中位数,出现次数最多的是众数.3、B【解析】

矩形、菱形、正方形都是特殊的平行四边形,因而平行四边形的性质就是四个图形都具有的性质.【详解】解:平行四边形的对角线互相平分,而对角线相等、平分一组对角、互相垂直不一定成立.

故平行四边形、矩形、菱形、正方形都具有的性质是:对角线互相平分.

故选:B.【点睛】本题主要考查了正方形、矩形、菱形、平行四边形的性质,理解四个图形之间的关系是解题关键.4、B【解析】解:∵不等式组有解,∴m≤x<1,∴m<1.故选B.点睛:本题主要考查了不等式组有解的条件,在解题时要会根据条件列出不等式.5、D【解析】

移项,提公因式法分解因式,即可求得方程的根.【详解】解:2x(x+1)=(x+1),

2x(x+1)-(x+1)=0,

(2x-1)(x+1)=0,

则方程的解是:x1=,x2=-1.

故选:D.【点睛】本题考查一元二次方程的解法-因式分解法,根据方程的特点灵活选用合适的方法是解题的关键.6、C【解析】

根据反比例函数的图象是以原点为对称中心的中心对称图形,菱形是以对角线的交点为对称中心的中心对称图形,可得BC边与另一条双曲线的交点坐标,即可得答案.【详解】∵反比例函数是以原点为对称中心的中心对称图形,菱形是以对角线的交点为对称中心的中心对称图形,∴BC边与另一条双曲线的交点坐标为(1,-2),(4,),∴图象在菱形ABCD内的部分所对应的x的取值范围是-4<x<-1或1<x<4.故选C.【点睛】本题主要考查反比例函数的性质及菱形的性质,反比例函数的图象是以原点为对称中心的中心对称图形;菱形是以对角线的交点为对称中心的中心对称图形;熟练掌握反比例函数及菱形图象的性质是解题关键.7、C【解析】试题解析:从图像可以看出当自变量时,y的取值范围在x轴的下方,故故选C.8、C【解析】

分x<0,x>0两段来分析.【详解】解:当x<0时,y=-|k|x,此时-|k|<0,∴y随x的增大而减小,又y>0,所以函数图像在第二象限,排除A,D;当x>0时,y=|k|x,此时|k|>0,∴y随x的增大而增大,又y>0,所以函数图像在第一象限,排除B;故C正确.故选:C.【点睛】本题主要考查一次函数的图像与性质,掌握基本性质是解题的关键.9、B【解析】

由菱形的性质可得AC⊥BD,BO=DO=4,CO=AO=3,由勾股定理可求CB=5,由菱形的面积公式可求AE的长.【详解】解:四边形是菱形,,故选:.【点睛】本题菱形的性质,熟练运用菱形的面积公式是本题的关键.10、A【解析】

由菱形的性质可得AC⊥BD,AO=CO=3,BO=DO=4,通过证明△AFP∽△AOD,△PED∽△AOD,可得,,即可求解.【详解】解:四边形是菱形,,,,,,,故选:.【点睛】本题考查了菱形的性质,相似三角形的判定和性质,利用相似比求解是本题的关键.11、C【解析】

根据平行线的判定与性质,可判断A;根据全等三角形的判断与性质,可判断B;根据对顶角性质,可判断C;根据直角三角形的判断与性质,可判断D.【详解】A“两直线平行,内错角相等”的逆命题是“内错角相等,两直线平行”是真命题,故A不符合题意;B“全等三角形的对应边相等”的逆命题是“三边对应相等的两个三角形全等”是真命题,故B不符合题意;C“对顶角相等”的逆命题是“相等的角是对顶角”是假命题,故C符合题意;D“有一个角为90度的三角形是直角三角形”的逆命题是“直角三角形中有一个角是90度”是真命题,故D不符合题意;故选C【点睛】本题考查了命题与定理,熟练掌握相关性质定理是解答本题的关键.12、D【解析】

根据轴对称图形与中心对称图形的概念求解.【详解】A.是轴对称图形,不是中心对称图形。故选项错误;B.是轴对称图形,不是中心对称图形。故选项错误;C.不是轴对称图形,也不是中心对称图形。故选项错误;D.是轴对称图形,也是中心对称图形。故选项正确。故选D.【点睛】此题考查中心对称图形,轴对称图形,解题关键在于掌握其概念二、填空题(每题4分,共24分)13、-1【解析】

先求出x=7时y的值,再将x=4、y=﹣1代入y=2x+b可得答案.【详解】∵当x=7时,y=6﹣7=﹣1,∴当x=4时,y=2×4+b=﹣1,解得:b=﹣1.故答案为:-1.【点睛】本题考查了函数值,解题的关键是掌握函数值的计算方法.14、9【解析】

根据二次根式的性质进行化简即可.【详解】=|-9|=9.故答案为:9.【点睛】此题主要考查了二次根式的化简,注意:.15、1【解析】

根据折叠的性质知:可知:BN=BP,从而可知∠BPN的值,再根据∠PBQ=∠CBQ,可将∠PBQ的角度求出.【详解】根据折叠的性质知:BP=BC,∠PBQ=∠CBQ

∴BN=BC=BP

∵∠BNP=90°

∴∠BPN=1°

∴∠PBQ=×60°=1°.

故答案是:1.【点睛】已知折叠问题就是已知图形的全等,根据边之间的关系,可将∠PBQ的度数求出.16、﹣3≤xP≤3,且xp≠1.【解析】

因为点P、Q是线段CG上的互反等点,推出点P在线段CC′上,由此可确定点P的横坐标xP的取值范围;【详解】如图,设C关于y轴的对称点C′(﹣3,8).由于点P与点Q互为反等点.又因为点P,Q是线段CG上的反等点,所以点P只能在线段CC′上,所点P的横坐标xP的取值范围为:﹣3≤xP≤3,且xp≠1.故答案为:﹣3≤xP≤3,且xp≠1.【点睛】本题考查坐标与图形的性质、点A与点B互为反等点的定义等知识,解题的关键是灵活运用所学知识解决问题,所以中考常创新题目.17、4x(x+1)(x-1)【解析】4x3-4x=4x(x2-1)=4x(x+1)(x-1).故答案为4x(x+1)(x-1).18、y=2x+1【解析】试题分析:由原直线上的两点坐标得到平移后的点的坐标,再用待定系数法即可求出平移后的解析式.解:由图象可知,点(0,0)、(2,4)在直线OA上,∴向上平移1个单位得到的点是(0,1)(2,5),那么这两个点在将直线OA向上平移1个单位,得到一个一次函数的图象y=kx+b上,则b=1,2k+b=5解得:k=2.∴y=2x+1.故答案为:y=2x+1.点睛:本题主要考查待定系数法求一次函数的解析式.解题的关键在于根据图象确定出平移后的点的坐标.三、解答题(共78分)19、(1)见解析;(1)见解析。【解析】

(1)利用点平移的规律写出点A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;

(1)利用网格特点和旋转的性质画出点B、C的对应点B1、C1,从而得到△AB1C1.【详解】解:(1)如图,△A1B1C1即为所求;

(1)如图,△AB1C1即为所求.

【点睛】本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.20、详见解析.【解析】

利用全等三角形的性质证明AB=CD即可解决问题.【详解】证明:∵AB∥CD,∴∠ABO=∠CDO,O是BD的中点,∠AOB=∠COD,OB=OD,∴△AOB≌△COD(ASA),∴AB=CD.又∵AB∥CD,∴四边形ABCD是平行四边形.【点睛】本题考查平行四边形的判定,解题的关键是灵活运用所学知识解决问题.21、(1)20,6;(2)估计年级每个学生的平均睡眠时间约6.3小时【解析】分析:(1)由B的人数和所占百分数求出共抽取的人数;再求出E和A的人数,由中位数的定义求出中位数,再将条形统计图补充完整即可;(2)求出所抽取的20名同学的平均睡眠时间,即可得出结果.详解:(1)共抽取的同学人数=6÷30%=20(人),睡眠时间7小时左右的人数=20×=5(人),睡眠时间8小时左右的人数=20﹣6﹣2﹣3﹣5=4(人),按照睡眠时间从小到大排列,各组人数分别为2,3,6,5,4,睡眠时间分别为4,5,6,7,8,共有20个数据,第10个和第11个数据都是6小时,它们的平均数也是6小时,∴同学们的睡眠时间的中位数是6小时左右;故答案为20,6;将条形统计图补充完整如图所示:(2)∵平均数为(4×8+6×6+2×4+3×5+5×7)=6.3(小时),∴估计年级每个学生的平均睡眠时间约6.3小时.点睛:本题考查了条形统计呼和扇形统计图以及中位数和平均数的知识,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.22、(1)证明见解析;(2).【解析】

(1)根据矩形ABCD的性质,判定△BOE≌△DOF(ASA),进而得出结论;(2)在Rt△ADE中,由勾股定理得出方程,解方程求出BE,由勾股定理求出BD,得出OB,再由勾股定理求出EO,即可得出EF的长.【详解】(1)证明:∵四边形ABCD是矩形,O是BD的中点,∴∠A=90°,AD=BC=4,AB∥DC,OB=OD,∴∠OBE=∠ODF,在△BOE和△DOF中,∴△BOE≌△DOF(ASA),∴EO=FO,∴四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,BD⊥EF,设BE=x,则

DE=x,AE=6-x,在Rt△ADE中,DE2=AD2+AE2,∴x2=42+(6-x)2,解得:x=,∵BD==2,∴OB=BD=,∵BD⊥EF,∴EO==,∴EF=2EO=.【点睛】本题主要考查了矩形的性质,菱形的性质、勾股定理、全等三角形的判定与性质,熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问的关键23、(1);(2)【解析】

(1)首先提取公因式2,进而利用完全平方公式分解因式即可.(2)先用平方差公式分解,再化简即可.【详解】解:(1)原式;(2)原式.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键,注意分解要彻底.24、(1)y=x+,y=﹣;(2)∠ACO=30°;【解析】

(1)根据A、B两点坐标求得一次函数解析式,再求得D点的具体坐标,从而求得反比例函数的解析式.(2)联立函数解析式求得C点坐标,过C点作CH⊥x轴于H,证明为等腰三角形,根据特殊直角三角形求得的度数,从而求得的度数.【详解】解:(1)设直线AB的解析式为:,把A(0,),B(2,0)分别代入,得,,解得=,b=.∴直线AB的解析式为:y=x+;∵点D(1,a)在直线AB上,∴a=+=,即

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论