江苏省南京玄武区十三中学集团科利华2024年八年级数学第二学期期末考试模拟试题含解析_第1页
江苏省南京玄武区十三中学集团科利华2024年八年级数学第二学期期末考试模拟试题含解析_第2页
江苏省南京玄武区十三中学集团科利华2024年八年级数学第二学期期末考试模拟试题含解析_第3页
江苏省南京玄武区十三中学集团科利华2024年八年级数学第二学期期末考试模拟试题含解析_第4页
江苏省南京玄武区十三中学集团科利华2024年八年级数学第二学期期末考试模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省南京玄武区十三中学集团科利华2024年八年级数学第二学期期末考试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.晨光中学规定学生的学期体育成绩满分为100分,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%,小桐三项体育成绩(百分制)依次95分、90分、86分,则小桐这学期的体育成绩是()A.88 B.89分 C.90分 D.91分2.某地开挖一条480米的渠道,开工后,实际每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖米,那么所列方程正确的是()A. B.C. D.3.三角形两边长分别为2和4,第三边是方程x2-6x+8=0的解,则这个三角形的周长是().A.8 B.8或10 C.10 D.8和104.如图.在菱形ABCD中,对角线AC,BD交于点O,下列说法错误的是()A.AB∥DCB.AC=BDC.AC⊥BDD.OA=OC5.如果分式有意义,那么的取值范围是()A. B.C. D.或6.如图,在▱ABCD中,∠C=130°,BE平分∠ABC,则∠AEB等于()A. B. C. D.7.如图,已知的顶点A、C分别在直线和上,O是坐标原点,则对角线OB长的最小值为()A.4 B.5 C.6 D.78.等腰三角形的底角是70°,则顶角为()A. B. C. D.9.关于的方程有实数解,那么的取值范围是()A. B. C. D.且10.如图在5×5的正方形网格中(每个小正方形的边长为1个单位长度),格点上有A、B、C、E五个点,若要求连接两个点所成线段的长度大于3且小于4,则可以连接()A.AE B.AB C.AD D.BE11.正方形具有而菱形不具有的性质是()A.对角线互相平分 B.对角线相等C.对角线平分一组对角 D.对角线互相垂直12.如图,由4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是9,小正方形面积是1,直角三角形较长直角边为a,较短直角边为b,则ab的值是()A.4 B.6 C.8 D.10二、填空题(每题4分,共24分)13.如图,矩形ABCD的对角线AC=8cm,∠AOD=120°,则AB的长为cm.14.在菱形中,,为中点,为对角线上一动点,连结和,则的值最小为_______.15.甲、乙两车从A城出发前往B城.在整个行程中,汽车离开A城的距离与时刻的对应关系如图所示,则当乙车到达B城时,甲车离B城的距离为________km.16.不等式的非负整数解为_____.17.计算:=________.18.请写出“三个角都相等的三角形是等边三角形”的逆命题:_____.三、解答题(共78分)19.(8分)A,B两城相距600千米,甲、乙两车同时从A城出发驶向B城,甲车到达B城后立即返回.如图是它们离A城的距离y(千米)与行驶时间x(小时)之间的函数图象.(1)求甲车行驶过程中y与x之间的函数解析式,并写出自变量x的取值范围;(2)当它们行驶7了小时时,两车相遇,求乙车速度.20.(8分)先化简,再求的值,其中x=221.(8分)如图,在中,延长至点,使,连接,作于点,交的延长线于点,且.(1)求证:;(2)如果,求的度数.22.(10分)如图,直线AB:y=x+2与x轴、y轴分别交于A,B两点,C是第一象限内直线AB上一点,过点C作CD⊥x轴于点D,且CD的长为,P是x轴上的动点,N是直线AB上的动点.(1)直接写出A,B两点的坐标;(2)如图①,若点M的坐标为(0,),是否存在这样的P点.使以O,P,M,N为顶点的四边形是平行四边形?若有在,请求出P点坐标;若不存在,请说明理由.(3)如图②,将直线AB绕点C逆时针旋转交y轴于点F,交x轴于点E,若旋转角即∠ACE=45°,求△BFC的面积.23.(10分)如图,在4×3的正方形网格中,每个小正方形的边长都是1.(1)分别求出线段AB,CD的长度;(2)在图中画出线段EF,使得EF的长为,用AB、CD、EF三条线段能否构成直角三角形,请说明理由.24.(10分)(1)计算:;(2)简化:25.(12分)A、B两座城市之间有一条高速公路,甲、乙两辆汽车同时分别从这条路两端的入口处驶入,并始终在高速公路上正常行驶.甲车驶往B城,乙车驶往A城,甲车在行驶过程中速度始终不变.甲车距B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的关系如图.(1)求y关于x的表达式;(2)已知乙车以60千米/时的速度匀速行驶,设行驶过程中,两车相距的路程为s(千米).请直接写出s关于x的表达式;(3)当乙车按(2)中的状态行驶与甲车相遇后,速度随即改为a(千米/时)并保持匀速行驶,结果比甲车晚20分钟到达终点,求乙车变化后的速度a.在下图中画出乙车离开B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的函数图象.26.2019年的暑假,李刚和他的父母计划去新疆旅游,他们打算坐飞机到乌鲁木齐,第二天租用一辆汽车自驾出游.根据以上信息,解答下列问题:(1)设租车时间为天,租用甲公司的车所需费用为元,租用乙公司的车所需费用为元,分别求出,关于的函数表达式;(2)请你帮助李刚,选择租用哪个公司的车自驾出游比较合算,并说明理由.

参考答案一、选择题(每题4分,共48分)1、B【解析】

根据加权平均数的意义计算即可.【详解】解:小桐这学期的体育成绩:95×20%+90×30%+86×50%=89(分),故选:B.【点睛】本题考查了加权平均数:若n个数x1,x2,x3,…,xn的权分别是w1,w2,w3,…,wn,则(x1w1+x2w2+…+xnwn)÷(w1+w2+…+wn)叫做这n个数的加权平均数.2、C【解析】

本题的关键描述语是:“提前1天完成任务”;等量关系为:原计划用时−实际用时=1.【详解】解:设原计划每天挖x米,则原计划用时为:天,实际用时为:天,∴,故选:C.【点睛】本题考查了由实际问题抽象出分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.3、C【解析】

解:∵,或,三角形的第三边为4或2,∵2+2=4不符合题意,,三角形的第三边为4,这个三角形的周长为故选C【点睛】此题做出来以后还要进行检验,三角形的三边关系满足,所以不符合此条件,应该舍去4、B【解析】A.菱形的对边平行且相等,所以AB∥DC,故本选项正确;B.菱形的对角线不一定相等;C.菱形的对角线互相垂直,所以AC⊥BD,故本选项正确;D.菱形的对角线互相平分,所以OA=OC,故本选项正确.故选B.5、C【解析】

分式有意义,则分式的分母不为0,可得关于x的不等式,解不等式即得答案.【详解】解:要使分式有意义,则x+1≠0,解得,故选C.【点睛】本题考查了分式有意义的条件,属于基础题型,分式的分母不为0是分式有意义的前提条件.6、D【解析】

由平行四边形ABCD中,∠C=130°,可求得∠ABC的度数,又由BE平分∠ABC,即可求得∠CBE的度数,然后由平行线的性质,求得答案.【详解】解:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠ABC+∠C=180°,∠AEB=∠CBE,∵∠C=130°,∴∠ABC=180°-∠C=50°,∵BE平分∠ABC,∴∠CBE=∠ABC=25°,∴∠AEB=∠CBE=25°.故选D.【点睛】此题考查了平行四边形的性质,属于基础题,解答本题的关键是掌握平行四边形邻角互补的性质,难度一般.7、B【解析】

当B在x轴上时,对角线OB长度最小,由题意得出∠ADO=∠CED=90°,OD=1,OE=4,由平行四边形的性质得出OA∥BC,OA=BC,得出∠AOD=∠CBE,由AAS证明△AOD≌△CBE,得出OD=BE=1,即可得出结果.【详解】当B在x轴上时,对角线OB长度最小,如图所示:直线x=1与x轴交于点D,直线x=4与x轴交于点E,根据题意得:∠ADO=∠CEB=90°,OD=1,OE=4,四边形ABCD是平行四边形,∴OA∥BC,OA=BC,∴∠AOD=∠CBE,在△AOD和△CBE中,,∴△AOD≌△CBE(AAS),∴OD=BE=1,∴OB=OE+BE=5,故答案为:5.【点睛】本题考查了平行四边形的性质、坐标与图形性质、全等三角形的判定与性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.8、A【解析】

根据等腰三角形的性质可得另一底角的度数,再根据三角形内角和定理即可求得顶角的度数.【详解】解:∵等腰三角形的底角是70°,∴其顶角=180°-70°-70°=40°,故选:A.【点睛】此题主要考查等腰三角形的性质及三角形内角和定理,熟练掌握等腰三角形的性质是解题的关键.9、B【解析】

由于x的方程(m-2)x2-2x+1=0有实数解,则根据其判别式即可得到关于m的不等式,解不等式即可求出m的取值范围.但此题要分m=2和m≠2两种情况.【详解】(1)当m=2时,原方程变为-2x+1=0,此方程一定有解;

(2)当m≠2时,原方程是一元二次方程,

∵有实数解,

∴△=4-4(m-2)≥0,

∴m≤1.

所以m的取值范围是m≤1.

故选:B.【点睛】此题考查根的判别式,解题关键在于分两种情况进行讨论,错误的认为原方程只是一元二次方程.10、C【解析】

根据勾股定理求出AD,BE,根据算术平方根的大小比较方法解答.【详解】AE=4,AB=3,由勾股定理得AD=,3<<4,BE==1.故选C.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.11、B【解析】

根据正方形和菱形的性质逐项分析可得解.【详解】根据正方形对角线的性质:平分、相等、垂直;菱形对角线的性质:平分、垂直,故选B.【点睛】考点:1.菱形的性质;2.正方形的性质.12、A【解析】

根据勾股定理可以求得a2+b2等于大正方形的面积,然后求四个直角三角形的面积,即可得到ab的值.【详解】解:根据勾股定理可得a2+b2=9,四个直角三角形的面积是:ab×1=9﹣1=8,即:ab=1.故选A.考点:勾股定理.二、填空题(每题4分,共24分)13、4.【解析】试题解析:∵四边形ABCD是矩形,∴OA=AC,OB=BD,BD=AC=8cm,∴OA=OB=4cm,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=4cm.考点:矩形的性质.14、2【解析】

根据轴对称的性质,作点E′和E关于BD对称.则连接AE′交BD于点P,P即为所求作的点.PE+PA的最小值即为AE′的长.【详解】作点E′和E关于BD对称.则连接AE′交BD于点P,

∵四边形ABCD是菱形,AB=4,E为AD中点,

∴点E′是CD的中点,

∴DE′=DC=×4=2,AE′⊥DC,

∴AE′=.

故答案为2.【点睛】此题考查轴对称-最短路线问题,熟知“两点之间线段最短”是解题的关键.15、1【解析】

由图示知:A,B两城相距300km,甲车从5:00出发,乙车从6:00出发;甲车10:00到达B城,乙车9:00到达B城;计算出乙车的平均速度为:300÷(9-6)=100(km/h),当乙车7:30时,乙车离A的距离为:100×1.5=150(km),得到点A(7.5,150)点B(5,0),设甲的函数解析式为:y=kt+b,把点A(7.5,150),B(5,0)代入解析式,求出甲的解析式,当t=9时,y=1×9-300=240,所以9点时,甲距离开A的距离为240km,则当乙车到达B城时,甲车离B城的距离为:300-240=1km.【详解】解:由图示知:A,B两城相距300km,甲车从5:00出发,乙车从6:00出发;甲车10:00到达B城,乙车9:00到达B城;

乙车的平均速度为:300÷(9-6)=100(km/h),

当乙车7:30时,乙车离A的距离为:100×1.5=150(km),

∴点A(7.5,150),

由图可知点B(5,0),

设甲的函数解析式为:y=kt+b,

把点A(7.5,150),B(5,0)代入y=kt+b得:,解得:,∴甲的函数解析式为:y=1t-300,

当t=9时,y=1×9-300=240,

∴9点时,甲距离开A的距离为240km,

∴则当乙车到达B城时,甲车离B城的距离为:300-240=1km.

故答案为:1.

【点睛】本题考查了一次函数的应用,解决本题的关键是求甲的函数解析式,即可解答.16、0,1,1【解析】

首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的非负整数即可.【详解】解不等式得:,∴不等式的非负整数解为0,1,1.故答案为:0,1,1.【点睛】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.17、7【解析】

根据平方差公式展开,再开出即可;【详解】===7.故答案为7.【点睛】本题考查了二次根式的化简,主要考查学生的计算和化简能力,题目比较好,难度适中.18、等边三角形的三个角都相等.【解析】

把原命题“三个角都相等的三角形是等边三角形”的题设与结论进行交换即可.【详解】“三个角都相等的三角形是等边三角形”的逆命题为“等边三角形的三个角都相等”,故答案为:等边三角形的三个角都相等.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.也考查了逆命题.三、解答题(共78分)19、(1)y=(2)75(千米/小时)【解析】

(1)先根据图象和题意知道,甲是分段函数,所以分别设0<x≤6时,y=k1x;6<x≤14时,y=kx+b,根据图象上的点的坐标,利用待定系数法可求解.

(2)注意相遇时是在6-14小时之间,求交点时应该套用甲中的函数关系式为y=-75x+1050,直接把x=7代入即可求相遇时y的值,再求速度即可.【详解】(1)①当0<x≤6时,设y=k1x把点(6,600)代入得k1=100所以y=100x;②当6<x≤14时,设y=kx+b∵图象过(6,600),(14,0)两点∴6解得k=-∴y=−75x+1050∴y=(2)当x=7时,y=−75×7+1050=525,V乙=5257=75(千米/小时20、,.【解析】

首先把分式利用通分、约分化简,然后代入数值计算即可求解.【详解】解:===,当x=3时,原式==.【点睛】本题考查分式的化简求值,熟练掌握分式的运算法则是解题的关键.21、(1)详见解析;(2)40°【解析】

(1)先由HL判定Rt△BCE≌Rt△CDF,得到∠ABC=∠DCF,然后由对顶角相等可得:∠DCF=∠ACB,进而可得∠ABC=∠ACB,然后由等角对等边,可得AB=AC;(2)由CD=BC,可得∠CBD=∠CDB,然后由三角形的外角的性质可得:∠ACB=∠CBD+∠CDB=2∠CBD,由∠ABC=∠ACB,进而可得:∠ABC=2∠CBD,然后由∠ABD=∠ABC+∠CBD=3∠CBD=105,进而可求:∠CBD的度数及∠ABC的度数,然后由三角形的内角和定理即可求∠A的度数.【详解】解:(1)证明:∵,,∴.又∵,,∴,∴,又∵,∴,∴.(2)∵,∴.∵,∴.∵,∴,∵,∴,∴,∴.【点睛】此题考查了直角三角形全等的判定与性质,及等腰三角形判定与性质,解题的关键是:熟记三角形全等的判定与性质.22、(1)点A(﹣4,0),点B(0,2);(2)点P(﹣1,0)或(﹣7,0)或(7,0);(3)S△BFC=.【解析】

(1)令x=0,y=0可求点A,点B坐标;(2)分OM为边,OM为对角线两种情况讨论,由平行四边形的性质可求点P坐标;(3)过点C作CG⊥AB,交x轴于点G,由题意可得点C坐标,即可求直线CG解析式为:y=−2x+,可得点G坐标,由锐角三角函数和角平分线的性质可得,可求点E坐标,用待定系数法可求直线CF解析式,可求点F坐标,即可求△BFC的面积.【详解】(1)当x=0时,y=2,当y=0时,0=×x+2∴x=﹣4∴点A(﹣4,0),点B(0,2)故答案为:(﹣4,0),(0,2)(2)设点P(x,0)若OM为边,则OM∥PN,OM=PN∵点M的坐标为(0,),∴OM⊥x轴,OM=∴PN⊥x轴,PN=∴当y=时,则=x+2∴x=﹣1当y=﹣时,则﹣=x+2∴x=﹣7∴点P(﹣1,0),点P(﹣7,0)若OM为对角线,则OM与PN互相平分,∵点M的坐标为(0,),点O的坐标(0,0)∴OM的中点坐标(0,)∵点P(x,0),∴点N(﹣x,)∴=×(﹣x)+2∴x=7∴点P(7,0)综上所述:点P(﹣1,0)或(﹣7,0)或(7,0)(3)∵CD=,即点C纵坐标为,∴=x+2∴x=3∴点C(3,)如图,过点C作CG⊥AB,交x轴于点G,∵CG⊥AB,∴设直线CG解析式为:y=﹣2x+b∴=﹣2×3+b∴b=∴直线CG解析式为:y=﹣2x+,∴点G坐标为(,0)∵点A(﹣4,0),点B(0,2)∴OA=4,OB=2,AG=∵tan∠CAG=∴∵∠ACF=45°,∠ACG=90°∴∠ACF=∠FCG=45°∴,且AE+EG=∴AE=∴OE=AE﹣AO=∴点E坐标为(,0)设直线CE解析式为:y=mx+n∴解得:m=3,n=∴直线CE解析式为:y=3x∴当x=0时,y=∴点F(0,)∴BF=∴S△BFC=.【点睛】本题是一次函数综合题,考查了待定系数法求解析式,平行四边形的性质,锐角三角函数等知识,求出点E坐标是本题的关键.23、(1)AB=,CD=;(2)能否构成直角三角形,理由见解析.【解析】

(1)利用勾股定理求出AB、CD的长即可;

(2)根据勾股定理的逆定理,即可作出判断.【详解】(1)(2)如图,∵∴∴以AB、CD、EF三条线可以组成直角三角形.【点睛】考查勾股定理,勾股定理的逆定理,比较基础,熟练掌握勾股定理以及勾股定理的逆定理是解题的关键.24、(1)1;(2)【解析】

(1)直接利用二次根式乘法运算法则进行化简,利用绝对值的性质化简,再合并二次根式即可求出答案;(2)根据二次根式的乘除法,先除化乘,再约分即可求出答案.【详解】解:(1)原式(2)原式【点睛】本题主要考查二次根式的乘除法运算,熟练掌握二次根式的乘除法

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论