




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省枣阳市阳光中学2024届数学八年级下册期末调研试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.某中学在“一元钱捐助”献爱心捐款活动中,六个年级捐款如下(单位:元):888,868,688,886,868,668那么这组数据的众数、中位数、平均数分别为()A.868,868,868 B.868,868,811 C.886,868,866 D.868,886,8112.若分式的值为0,则x的值为()A.-2 B.0 C.2 D.±23.甲从商贩A处购买了若干斤西瓜,又从商贩B处购买了若干斤西瓜.A、B两处所购买的西瓜重量之比为3:2,然后将买回的西瓜以从A、B两处购买单价的平均数为单价全部卖给了乙,结果发现他赔钱了,这是因为()A.商贩A的单价大于商贩B的单价B.商贩A的单价等于商贩B的单价C.商版A的单价小于商贩B的单价D.赔钱与商贩A、商贩B的单价无关4.如图,在中,,,,以点为圆心,长为半径画弧,交于点,则()A.2.5 B.3 C.2 D.3.55.用公式解方程﹣3x2+5x﹣1=0,正确的是()A.x= B.x= C.x= D.x=6.如图,点A,B为定点,定直线l//AB,P是l上一动点.点M,N分别为PA,PB的中点,对于下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A.②③ B.②⑤ C.①③④ D.④⑤7.如图,在平面直角坐标系中,直线y=﹣x+4与x轴、y轴分别交于A、B两点,点C在第二象限,若BC=OC=OA,则点C的坐标为()A.(﹣,2) B.(﹣3,) C.(﹣2,2) D.(﹣3,2)8.PM2.5是指大气中直径小于或等于0.0000025米的颗粒物,将0.0000025用科学记数法表示为()A.0.25×10-5B.2.5×10-5 B.2.5×10-6 C.2.5×10-79.如图,已知四边形ABCD是边长为4的正方形,E为CD上一点,且DE=1,F为射线BC上一动点,过点E作EG⊥AF于点P,交直线AB于点G.则下列结论中:①AF=EG;②若∠BAF=∠PCF,则PC=PE;③当∠CPF=45°时,BF=1;④PC的最小值为﹣1.其中正确的有()A.1个 B.1个 C.3个 D.4个10.如图,腰长为的等腰直角三角形绕直角顶点顺时针旋转得到,则图中阴影部分的面积等于()A. B. C. D.11.某鞋厂调查了商场一个月内不同尺码男鞋的销量,在以下统计量中,该鞋厂最关注的是()A.平均数 B.中位数 C.众数 D.方差12.已知菱形的两条对角线长分别为6和8,则它的周长为()A.10 B.14 C.20 D.28二、填空题(每题4分,共24分)13.现有四根长,,,的木棒,任取其中的三根,首尾顺次相连后,能组成三角形的概率为______.14.命题“角平分线上的点到这个角的两边的距离相等”的逆命题是______,它是___命题(填“真”或“假”).15.如图,在Rt△ABC中,∠ACB=90°,AC=BC=6cm,动点P从点A出发,沿AB方向以每秒cm的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒lcm的速度向终点C运动,将△PQC沿BC翻折,点P的对应点为点P′,设Q点运动的时间为t秒,若四边形QP′CP为菱形,则t的值为_____.16.已知关于x的方程x2-2ax+1=0有两个相等的实数根,则a=____.17.如图所示的圆形工件,大圆的半径为,四个小圆的半径为,则图中阴影部分的面积是_____(结果保留).18.分解因时:=__________三、解答题(共78分)19.(8分)(已知:如图1,矩形OACB的顶点A,B的坐标分别是(6,0)、(0,10),点D是y轴上一点且坐标为(0,2),点P从点A出发以每秒1个单位长度的速度沿线段AC﹣CB方向运动,到达点B时运动停止.(1)设点P运动时间为t,△BPD的面积为S,求S与t之间的函数关系式;(2)当点P运动到线段CB上时(如图2),将矩形OACB沿OP折叠,顶点B恰好落在边AC上点B′位置,求此时点P坐标;(3)在点P运动过程中,是否存在△BPD为等腰三角形的情况?若存在,求出点P坐标;若不存在,请说明理由.20.(8分)如图,的对角线,相交于点,,是上的两点,并且,连接,.(1)求证;(2)若,连接,,判断四边形的形状,并说明理由.21.(8分)如图,直线交x轴于点A,y轴于点B.(1)求线段AB的长和∠ABO的度数;(2)过点A作直线L交y轴负半轴于点C,且△ABC的面积为,求直线L的解析式.22.(10分)如图,在平行四边形中,对角线相交于点,于点.(1)用尺规作于点(要求保留作图痕迹,不要求写作法与证明);(2)求证:.23.(10分)为了提高学生书写汉字的能力,增强保护汉字的意识,某校举办了“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为(分),且(无满分),将其按分数段分为五组,绘制出以下不完整表格:组别成绩(分)频数(人数)频率一2二100.2三12四0.4五6请根据表格提供的信息,解答以下问题:(1)本次决赛共有__________名学生参加;(2)直接写出表中:_______________________(3)请补全右面相应的频数分布直方图;(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为__________.24.(10分)如图1.点D,E在△ABC的边BC上.连接AD.AE.①AB=AC:②AD=AE:③BD=CE.以此三个等式中的两个作为命题的题设,另一个作为命题的结论.构成三个命题:①②③;①③②,②③①.(1)以上三个命题是真命题的为(直接作答)__________________;(2)选择一个真命题进行证明(先写出所选命题.然后证明).25.(12分)在平行四边形中,连接、交于点,点为的中点,连接并延长交于的延长线于点.(1)求证:为的中点;(2)若,,连接,试判断四边形的形状,并说明理由.26.一个四位数,记千位上和百位上的数字之和为,十位上和个位上的数字之和为,如果,那么称这个四位数为“和平数”.例如:1423,,,因为,所以1423是“和平数”.(1)直接写出:最小的“和平数”是,最大的“和平数”是;(2)将一个“和平数”的个位上与十位上的数字交换位置,同时,将百位上与千位上的数字交换位置,称交换前后的这两个“和平数”为一组“相关和平数”.例如:1423与4132为一组“相关和平数”求证:任意的一组“相关和平数”之和是1111的倍数.(3)求个位上的数字是千位上的数字的两倍且百位上的数字与十位上的数字之和是12的倍数的所有“和平数”;
参考答案一、选择题(每题4分,共48分)1、B【解析】
根据众数的定义即可得出众数,根据题目中的数据可以按照从小到大的顺序排列,从而可以求得这组数据的中位数,根据平均数公式即可得出平均数.【详解】解:由888,868,688,886,868,668可知众数为:868将888,868,688,886,868,668进行排序668,688,868,868,886,888,可知中位数是:平均数为:故答案为:868,868,811故选:B【点睛】本题考查了众数、平均数、中位数的求法,解决本题的关键是明确它们的意义才会计算,求平均数是用一组数据的和除以这组数据的个数;中位数的求法分两种情况:把一组数据从小到大排成一列,正中间如果是一个数,这个数就是中位数,如果正中间是两个数,那中位数是这两个数的平均数.2、C【解析】由题意可知:,解得:x=2,故选C.3、A【解析】
设商贩A处西瓜的单价为a,商贩B处西瓜的单价为b,根据题意列出不等式进行求解即可得.【详解】设商贩A处西瓜的单价为a,商贩B处西瓜的单价为b,则甲的利润=总售价﹣总成本=×5﹣(3a+2b)=0.5b﹣0.5a,赔钱了说明利润<0,∴0.5b﹣0.5a<0,∴a>b,故选A.【点睛】本题考查了不等式的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式.4、C【解析】
首先利用勾股定理可以算出AB的长,再根据题意可得到AD=AC,根据BD=AB-AD即可算出答案.【详解】∵AC=3,BC=4,
∴AB==5,
∵以点A为圆心,AC长为半径画弧,交AB于点D,
∴AD=AC,
∴AD=3,
∴BD=AB-AD=5-3=1.
故选:C.【点睛】此题考查勾股定理,解题关键是熟练掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.5、C【解析】
求出b2-4ac的值,再代入公式求出即可.【详解】解:-3x2+5x-1=0,
b2-4ac=52-4×(-3)×(-1)=13,
x=
故选C.【点睛】本题考查了解一元二次方程的应用,能正确利用公式解一元二次方程是解此题的关键.6、B【解析】试题分析:①、MN=AB,所以MN的长度不变;②、周长C△PAB=(AB+PA+PB),变化;③、面积S△PMN=S△PAB=×AB·h,其中h为直线l与AB之间的距离,不变;④、直线NM与AB之间的距离等于直线l与AB之间的距离的一半,所以不变;⑤、画出几个具体位置,观察图形,可知∠APB的大小在变化.故选B考点:动点问题,平行线间的距离处处相等,三角形的中位线7、A【解析】
根据一次函数图象上点的坐标特征可求出点A、B的坐标,由BC=OC利用等腰三角形的性质可得出OC、OE的值,再利用勾股定理可求出CE的长度,此题得解.【详解】∵直线y=-x+4与x轴、y轴分别交于A、B两点,
∴点A的坐标为(3,0),点B的坐标为(0,4).
过点C作CE⊥y轴于点E,如图所示.∵BC=OC=OA,
∴OC=3,OE=2,
∴CE=,∴点C的坐标为(-,2).
故选A.【点睛】考查了一次函数图象上点的坐标特征、等腰三角形的性质以及勾股定理,利用等腰直角三角形的性质结合勾股定理求出CE、OE的长度是解题的关键.8、C【解析】试题分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.所以:0.0000025=2.5×10-6;故选C.【考点】科学记数法—表示较小的数.9、C【解析】
连接AE,过E作EH⊥AB于H,则EH=BC,根据全等三角形的判定和性质定理即可得到AF=EG,故①正确;根据平行线的性质和等腰三角形的性质即可得到PE=PC;故②正确;连接EF,推出点E,P,F,C四点共圆,根据圆周角定理得到∠FEC=∠FPC=45°,于是得到BF=DE=1,故③正确;取AE的中点O,连接PO,CO,根据直角三角形的性质得到AO=PO=AE,推出点P在以O为圆心,AE为直径的圆上,当O、C、P共线时,CP的值最小,根据三角形的三边关系得到PC≥OC﹣OP,根据勾股定理即可得到结论.【详解】连接AE,过E作EH⊥AB于H,则EH=BC,∵AB=BC,∴EH=AB,∵EG⊥AF,∴∠BAF+∠AGP=∠BAF+∠AFB=90°,∴∠EGH=∠AFB,∵∠B=∠EHG=90°,∴△HEG≌△ABF(AAS),∴AF=EG,故①正确;∵AB∥CD,∴∠AGE=∠CEG,∵∠BAF+∠AGP=90°,∠PCF+∠PCE=90°,∵∠BAF=∠PCF,∴∠AGE=∠PCE,∴∠PEC=∠PCE,∴PE=PC;故②正确;连接EF,∵∠EPF=∠FCE=90°,∴点E,P,F,C四点共圆,∴∠FEC=∠FPC=45°,∴EC=FC,∴BF=DE=1,故③正确;取AE的中点O,连接PO,CO,∴AO=PO=AE,∵∠APE=90°,∴点P在以O为圆心,AE为直径的圆上,∴当O、C、P共线时,CP的值最小,∵PC≥OC﹣OP,∴PC的最小值=OC﹣OP=OC﹣AE,∵OC==,AE==,∴PC的最小值为﹣,故④错误,故选:C.【点睛】此题考查了正方形的性质、全等三角形的判定和性质、直角三角形的性质、圆的综合等知识,借助圆的性质解决线段的最小值是解答的关键.10、D【解析】
根据旋转的性质求出的值,根据勾股定理和阴影部分面积等于△ADB的面积减△BEF的面积,即可求得阴影部分的面积.【详解】旋转,,,,,,设,则,,,,..故选D.【点睛】本题考查了阴影部分的面积问题,掌握旋转的性质和三角形的面积公式是解题的关键.11、C【解析】
根据众数的定义即可判断.【详解】根据题意鞋厂最关注的是众数,故选C.【点睛】此题主要考查众数的定义,解题的关键是熟知众数的性质.12、C【解析】
根据菱形的对角线互相垂直平分的性质,利用对角线的一半,根据勾股定理求出菱形的边长,再根据菱形的四条边相等求出周长即可.【详解】解:如图所示,根据题意得AO=×8=4,BO=×6=3,∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD,∴△AOB是直角三角形,∴AB==5,∴此菱形的周长为:5×4=1.故选:C.【点睛】本题主要考查了菱形的性质,利用勾股定理求出菱形的边长是解题的关键,同学们也要熟练掌握菱形的性质:①菱形的四条边都相等;②菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.二、填空题(每题4分,共24分)13、【解析】
先展示所有可能的结果数,再根据三角形三边的关系得到能组成三角形的结果数,然后根据概率公式求解.【详解】解:∵现有四根长30cm、40cm、70cm、90cm的木棒,任取其中的三根,可能结果有:30cm、40cm、70cm;30cm、40cm、90cm;30cm、70cm、90cm;40cm、70cm、90cm;其中首尾相连后,能组成三角形的有:30cm、70cm、90cm;40cm、70cm、90cm;共有4种等可能的结果数,其中有2种能组成三角形,
所以能组成三角形的概率=.故答案为:.【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.14、到角的两边距离相等的点在角平分线上,真.【解析】
把一个命题的条件和结论互换就得到它的逆命题.【详解】解:命题“角平分线上的点到这个角两边的距离相等”的逆命题是“到角的两边距离相等的点在角平分线上”,它是真命题.【点睛】本题考查了互逆命题的知识和命题的真假判断,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.15、1【解析】作PD⊥BC于D,PE⊥AC于E,如图,AP=t,BQ=tcm,(0≤t<6)∵∠C=90°,AC=BC=6cm,∴△ABC为直角三角形,∴∠A=∠B=45°,∴△APE和△PBD为等腰直角三角形,∴PE=AE=AP=tcm,BD=PD,∴CE=AC﹣AE=(6﹣t)cm,∵四边形PECD为矩形,∴PD=EC=(6﹣t)cm,∴BD=(6﹣t)cm,∴QD=BD﹣BQ=(6﹣1t)cm,在Rt△PCE中,PC1=PE1+CE1=t1+(6﹣t)1,在Rt△PDQ中,PQ1=PD1+DQ1=(6﹣t)1+(6﹣1t)1,∵四边形QPCP′为菱形,∴PQ=PC,∴t1+(6﹣t)1=(6﹣t)1+(6﹣1t)1,∴t1=1,t1=6(舍去),∴t的值为1.故答案为1.【点睛】
此题主要考查了菱形的性质,勾股定理,关键是要熟记定理的内容并会应用.16、【解析】
根据方程的系数结合根的判别式△=0,可得出关于a的一元二次方程,解之即可得出结论.【详解】解:∵关于x的方程x2-2ax+1=0有两个相等的实数根,∴△=(-2a)2-4×1×1=0,解得:a=±1.故答案为:±1.【点睛】本题考查了根的判别式,牢记“当△=0时,方程有两个相等的两个实数根”是解题的关键.17、3080π.【解析】
用大圆的面积减去4个小圆的面积即可得到剩余部分的面积,然后把R和r的值代入计算出对应的代数式的值.【详解】依题意得:65.41π-17.31π×4=4177.16π-1197.16π=3080π(mm1).答:剩余部分面积为3080πmm1.故答案为:3080π.【点睛】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.也考查了求代数式的值.18、.【解析】
首先提取公因式,进而利用完全平方公式分解因式即可.【详解】.故答案为:.【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键.三、解答题(共78分)19、(1)S=(2)(3)存在,(6,6)或,【解析】
(1)当P在AC段时,△BPD的底BD与高为固定值,求出此时面积;当P在BC段时,底边BD为固定值,用t表示出高,即可列出S与t的关系式;
(2)当点B的对应点B′恰好落在AC边上时,设P(m,10),则PB=PB′=m,由勾股定理得m2=22+(6-m)2,即可求出此时P坐标;
(3)存在,分别以BD,DP,BP为底边三种情况考虑,利用勾股定理及图形与坐标性质求出P坐标即可.【详解】解:(1)∵A,B的坐标分别是(6,0)、(0,10),
∴OA=6,OB=10,
当点P在线段AC上时,OD=2,BD=OB-OD=10-2=8,高为6,
∴S=×8×6=24;
当点P在线段BC上时,BD=8,高为6+10-t=16-t,
∴S=×8×(16-t)=-4t+64;
∴S与t之间的函数关系式为:;(2)设P(m,10),则PB=PB′=m,如图1,
∵OB′=OB=10,OA=6,∴AB′==8,
∴B′C=10-8=2,
∵PC=6-m,
∴m2=22+(6-m)2,解得m=
则此时点P的坐标是(,10);(3)存在,理由为:
若△BDP为等腰三角形,分三种情况考虑:如图2,
①当BD=BP1=OB-OD=10-2=8,
在Rt△BCP1中,BP1=8,BC=6,根据勾股定理得:CP1=,
∴AP1=10−,
即P1(6,10-),
②当BP2=DP2时,此时P2(6,6);
③当DB=DP3=8时,
在Rt△DEP3中,DE=6,
根据勾股定理得:P3E=,
∴AP3=AE+EP3=+2,
即P3(6,+2),
综上,满足题意的P坐标为(6,6)或(6,10-),(6,+2).【点睛】本题是四边形综合题,考查了矩形的性质,坐标与图形性质,等腰三角形的性质,勾股定理等知识,注意分类讨论思想和方程思想的运用.20、(1)详见解析;(2)四边形BEDF是矩形,理由详见解析.【解析】
(1)已知四边形ABCD是平行四边形,根据平行四边形的性质可得OA=OC,OB=OD,由AE=CF即可得OE=OF,利用SAS证明△BOE≌△DOF,根据全等三角形的性质即可得BE=DF;(2)四边形BEDF是矩形.由(1)得OD=OB,OE=OF,根据对角线互相平方的四边形为平行四边形可得四边形BEDF是平行四边形,再由BD=EF,根据对角线相等的平行四边形为矩形即可判定四边形EBFD是矩形.【详解】(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OE=OF,在△BOE和△DOF中,,∴△BOE≌△DOF(SAS),∴BE=DF;(2)四边形BEDF是矩形.理由如下:如图所示:∵OD=OB,OE=OF,∴四边形BEDF是平行四边形,∵BD=EF,∴四边形EBFD是矩形.【点睛】本题考查了平行四边形的性质及判定、矩形的判定,熟练运用相关的性质及判定定理是解决问题的关键.21、(1)4,;(1).【解析】
(1)先分别求出点A、B的坐标,则可求出OA、OB的长,利用直角三角形的性质即可解答;(1)根据三角形面积公式求出BC,进而求得点C坐标,利用待定系数法求解即可.【详解】解:(1)当x=0时,y=,∴B(0,),即OB=,当y=0时,,解得x=1.∴A(1,0),即OA=1,在直角三角形ABO中,∴AB===4,∴直角三角形ABO中,OA=AB;∴∠ABO=30˚;(1)∵△ABC的面积为,∴×BC×AO=∴×BC×1=,即BC=∵BO=∴CO=﹣=2∴C(0,﹣2)设L的解析式为y=kx+b,则,解得,∴L的解析式为y=﹣2.【点睛】本题考查了一次函数的图象与性质、含30º角的直角三角形、勾股定理、三角形面积公式,熟练掌握一次函数的图象与性质,会利用待定系数法求函数解析式是解答的关键.22、(1)见解析;(2)见解析.【解析】
(1)以C为圆心,大于AE长为半径画弧,分别交BD于点M,N两点,再分别以M,N为圆心,以大于MN为半径画弧,交于点G,连接CG并延长,交BD于点F,即可得CF⊥BD于点F;(2)由AE⊥BD于点E,CF⊥BD于点F,可得∠AEO=∠CFO=90°,又由在平行四边形ABCD中,OA=OC,即可利用AAS,判定△AOE≌△COF,继而证得结论【详解】解:(1)如图,为所求;(2)∵四边形是平行四边形,∴∵于点,于点,∴在和中,∴≌()∴【点睛】本题考查了平行四边形的性质,以及基本作图:过直线外一点做已知直线的垂线段,掌握平行四边形的性质以及三角形全等的判定和过直线外一点做已知直线的垂线段,是解题的关键.23、解:(1)50;(2)20,0.24;(3)见详解;(4)52%.【解析】
(1)用第二组的频数除以它所占的频率得到调查的总人数;
(2)用第四组的频率乘以样本容量得到a的值,用第三组的频数除以样本容量得到b的值;
(3)利用a的值补全频数分布直方图;
(4)用第四组和第五组的频数和除以样本容量即可.【详解】解:解:(1)10÷0.2=50,
所以本次决赛共有50名学生参加;
(2)a=50×0.4=20,b==0.24;
故答案为50;20;0.24;
(3)补全频数分布直方图为:
(4)本次大赛的优秀率=×100%=52%.
故答案为50;20;0.24;52%.【点睛】本题考查了频数(率)分布直方图:能从频数分布直方图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.24、(1)①②③;①③②;②③①.(2)见解析【解析】
(1)根据真命题的定义即可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度高新技术企业简易解聘合同
- 串激式电刷行业深度研究报告
- 2025年债权债务结清与人工智能技术研发与应用合同
- 2025年度别墅租赁合同转让及物业管理服务协议范本
- 产品合同范本
- 2025年度个体营业执照租赁合同租赁期满续租及退出机制协议
- 企业银行借款抵押合同范本
- 2025年度家庭健康饮食规划与家政服务合同
- 2025年度安防监控技术研发投资借款合同
- 2025年度手房屋买卖补充协议-关于房屋交易时间节点约定
- 《氨制冷企业安全规范》AQ7015-2018
- 医院门诊医生绩效考核标准及评分细则
- 辽宁省沈阳市名校2024年中考物理模拟试题含解析
- 历史类常识考试100题及完整答案
- 医院纳入定点后使用医疗保障基金的预测性分析报告
- 媒介素养概论 课件 刘勇 第0-4章 绪论、媒介素养-新闻评论
- 智能割草机器人的概述外文翻译
- 民营企业职务犯罪预防
- 睿智医药科技股份有限公司财务分析研究
- 【品牌战略】麦当劳公司成功管理秘诀苦心经营
- 菜点与酒水知识课件
评论
0/150
提交评论