江苏省无锡市江阴市南菁高级中学2024年数学八年级下册期末经典试题含解析_第1页
江苏省无锡市江阴市南菁高级中学2024年数学八年级下册期末经典试题含解析_第2页
江苏省无锡市江阴市南菁高级中学2024年数学八年级下册期末经典试题含解析_第3页
江苏省无锡市江阴市南菁高级中学2024年数学八年级下册期末经典试题含解析_第4页
江苏省无锡市江阴市南菁高级中学2024年数学八年级下册期末经典试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省无锡市江阴市南菁高级中学2024年数学八年级下册期末经典试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,是我国古代数学家在为《周髀算经》作注解时给出的“弦图”,给出“弦图”的这位数学家是()A.毕达哥拉斯 B.祖冲之 C.华罗庚 D.赵爽2.已知温州至杭州铁路长为380千米,从温州到杭州乘“G”列动车比乘“D”列动车少用20分钟,“G”列动车比“D”列动车每小时多行驶30千米,设“G”列动车速度为每小时x千米,则可列方程为()A. B.C. D.3.如图,是一张平行四边形纸片ABCD(AB<BC),要求利用所学知识将它变成一个菱形,甲、乙两位同学的作法分别如下:对于甲、乙两人的作法,可判断()A.甲、乙均正确 B.甲、乙均错误 C.甲正确,乙错误 D.甲错误,乙正确4.一个多边形的每个内角均为108°,则这个多边形是()边形.A.4 B.5 C.6 D.75.下列命题是假命题的是()A.四个角相等的四边形是矩形B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形D.对角线垂直的平行四边形是菱形6.下列各组线段中,能够组成直角三角形的一组是(

)A.1,2,3 B.2,3,4 C.4,5,6 D.1,,7.在以下列线段a、b、c的长为边的三角形中,不能构成直角三角形的是()A.a=9b=41c=40 B.a=b=5c=5C.a:b:c=3:4:5 D.a=11b=12c=158.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论①k<0;②a>0;③当x<3时,y1<y2中,正确的个数是()A.0 B.1 C.2 D.39.下列说法错误的是()A.一组对边平行且相等的四边形是平行四边形 B.四条边都相等的四边形是菱形C.对角线互相垂直的平行四边形是正方形 D.四个角都相等的四边形是矩形10.如图,正方形ABCD的边长为3,E在BC上,且BE=2,P在BD上,则PE+PC的最小值为()A. B. C. D.11.为了了解我市2019年中考数学学科各分数段成绩分布情况,从中抽取150名考生的中考数学成绩进行统计分析。在这个问题中,样本是指()A.150 B.被抽取的150名考生C.我市2019年中考数学成绩 D.被抽取的150名考生的中考数学成绩12.用反证法证明“三角形的三个外角中至多有一个锐角”,应先假设A.三角形的三个外角都是锐角B.三角形的三个外角中至少有两个锐角C.三角形的三个外角中没有锐角D.三角形的三个外角中至少有一个锐角二、填空题(每题4分,共24分)13.如图,直线、、、互相平行,直线、、、互相平行,四边形面积为,四边形面积为,则四边形面积为__________.14.如图,点A,B分别是反比例函数y=-1x与y=kx的图象上的点,连接AB,过点B作BC⊥x轴于点C,连接AC交y轴于点E.若AB∥x轴,AE:EC=1:2,则k15.已知直线y=kx过点(1,3),则k的值为____.16.正方形A1B1C1O,正方形A2B2C2C1,正方形A3B3C3C2,按如图所示的方式放置在平面直角坐标系中,若点A1、A2、A3和C1、C2、C3…分别在直线y=x+1和x轴上,则点B2019的坐标是_____.17.若的整数部分为,小数部分为,则的值是___.18.如图,在反比例函数与的图象上分别有一点,,连接交轴于点,若且,则__________.三、解答题(共78分)19.(8分)如图,在四边形ABCD中,AB∥CD,∠BCD=90°,AB=AD=10cm,BC=8cm,点P从点A出发,以每秒2cm的速度沿线段AB向点B方向运动,点Q从点D出发,以每秒3cm的速度沿线段DC向点C运动,已知动点P、Q同时出发,点P到达B点或点Q到达C点时,P、Q运动停止,设运动时间为t(秒).(1)求CD的长;(2)当四边形PBQD为平行四边形时,求t的值;(3)在点P、点Q的运动过程中,是否存在某一时刻,使得PQ⊥AB?若存在,请求出t的值并说明理由;若不存在,请说明理20.(8分)如图,在平面直角坐标系xOy中,直线y=﹣2x+a与y轴交于点C(0,6),与x轴交于点B.(1)求这条直线的解析式;(2)直线AD与(1)中所求的直线相交于点D(﹣1,n),点A的坐标为(﹣3,0).①求n的值及直线AD的解析式;②求△ABD的面积;③点M是直线y=﹣2x+a上的一点(不与点B重合),且点M的横坐标为m,求△ABM的面积S与m之间的关系式.21.(8分)如图,在中,,平分,于.(1)求证:;(2)若,,求的面积.22.(10分)已知一次函数的图象过点A(0,3)和点B(3,0),且与正比例函数的图象交于点P.(1)求函数的解析式和点P的坐标.(2)画出两个函数的图象,并直接写出当时的取值范围.(3)若点Q是轴上一点,且△PQB的面积为8,求点Q的坐标.23.(10分)如图,在平面直角坐标系中,为坐标原点,已知直线经过点,它与轴交于点,点在轴正半轴上,且.求直线的函数解析式;24.(10分)如图1,在平面直角坐标系中直线与x轴、y轴相交于A、B两点,动点C在线段OA上,将线段CB绕着点C顺时针旋转得到CD,此时点D恰好落在直线AB上时,过点D作轴于点E.求证:≌;如图2,将沿x轴正方向平移得,当直线经过点D时,求点D的坐标及平移的距离;若点P在y轴上,点Q在直线AB上是否存在以C、D、P、Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的Q点坐;若不存在,请说明理由.25.(12分)某商店以固定进价一次性购进一种商品,3月份按一定售价销售,销售额为2400元,为扩大销量,减少库存,4月份在3月份售价基础上打9折销售,结果销售量增加30件,销售额增加840元.(1)求该商店3月份这种商品的售价是多少元?(2)如果该商店3月份销售这种商品的利润为900元,那么该商店4月份销售这种商品的利润是多少元?26.化简求值:1(+1)(-1)-(1-1),其中=1.

参考答案一、选择题(每题4分,共48分)1、D【解析】

我国三国时期数学家赵爽为了证明勾股定理,创造了一幅“弦图”,后人称其为“赵爽弦图”,“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.【详解】解:我国三国时期数学家赵爽在为《周髀算经》作注解时创造了一幅“弦图”,后人称其为“赵爽弦图”,“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.故答案是:D.【点睛】本题考查了学生对我国数学史的了解,籍此培养学生的爱国情怀和民族自豪感,增强学习数学的兴趣.2、D【解析】

设“G”列动车速度为每小时x千米,则“D”列动车速度为每小时(x-30)千米,根据时间=路程÷速度结合行驶380千米“G”列动车比“D”列动车少用小时(20分钟),即可得出关于x的分式方程,此题得解.【详解】解:设“G”列动车速度为每小时x千米,则“D”列动车速度为每小时(x﹣30)千米,依题意,得:.故选D.【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.3、A【解析】

首先证明△AOE≌△COF(ASA),可得AE=CF,再根据一组对边平行且相等的四边形是平行四边形可判定判定四边形AECF是平行四边形,再由AC⊥EF,可根据对角线互相垂直的四边形是菱形判定出AECF是菱形;四边形ABCD是平行四边形,可根据角平分线的定义和平行线的定义,求得AB=AF,所以四边形ABEF是菱形.【详解】甲的作法正确;∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠ACB,∵EF是AC的垂直平分线,∴AO=CO,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴AE=CF,又∵AE∥CF,∴四边形AECF是平行四边形,∵EF⊥AC,∴四边形AECF是菱形;乙的作法正确;∵AD∥BC,∴∠1=∠2,∠6=∠7,∵BF平分∠ABC,AE平分∠BAD,∴∠2=∠3,∠5=∠6,∴∠1=∠3,∠5=∠7,∴AB=AF,AB=BE,∴AF=BE∵AF∥BE,且AF=BE,∴四边形ABEF是平行四边形,∵AB=AF,∴平行四边形ABEF是菱形;故选:A.【点睛】此题主要考查了菱形形的判定,关键是掌握菱形的判定方法:①菱形定义:一组邻边相等的平行四边形是菱形(平行四边形+一组邻边相等=菱形);②四条边都相等的四边形是菱形.③对角线互相垂直的平行四边形是菱形(或“对角线互相垂直平分的四边形是菱形”).4、B【解析】

首先求得外角的度数,然后利用360除以外角的度数即可求解.【详解】外角的度数是:180-108=72°,

则这个多边形的边数是:360÷72=1.故选B.5、C【解析】试题分析:A.四个角相等的四边形是矩形,为真命题,故A选项不符合题意;B.对角线相等的平行四边形是矩形,为真命题,故B选项不符合题意;C.对角线垂直的平行四边形是菱形,为假命题,故C选项符合题意;D.对角线垂直的平行四边形是菱形,为真命题,故D选项不符合题意.故选C.考点:命题与定理.6、D【解析】试题分析:A.,不能组成直角三角形,故错误;B.,不能组成直角三角形,故错误;C.,不能组成直角三角形,故错误;D.,能够组成直角三角形,故正确.故选D.考点:勾股定理的逆定理.7、D【解析】

根据直角三角形的判定,符合a2+b2=c2即可;反之不符合的不能构成直角三角形.【详解】解:A、因为92+402=412,故能构成直角三角形;B、因为52+52=(5)2,故能构成直角三角形;C、因为32+42=52,故能构成直角三角形;D、因为112+122≠152,故不能构成直角三角形;故选:D.【点睛】本题考查的是勾股定理的逆定理,当三角形中三边满足关系时,则三角形为直角三角形.8、B【解析】

根据y1=kx+b和y2=x+a的图象可知:k<0,a<0,所以当x<3时,相应的x的值,y1图象均高于y2的图象.【详解】解:∵y1=kx+b的函数值随x的增大而减小,∴k<0;故①正确∵y2=x+a的图象与y轴交于负半轴,∴a<0;当x<3时,相应的x的值,y1图象均高于y2的图象,∴y1>y2,故②③错误.故选:B.【点睛】本题考查了两条直线相交问题,难点在于根据函数图象的走势和与y轴的交点来判断各个函数k,b的值.9、C【解析】

根据平行四边形、菱形、矩形、正方形的判定分别进行分析即可.【详解】解:A、一组对边平行且相等的四边形是平行四边形,说法正确;

B、四条边都相等的四边形是菱形,说法正确;

C、对角线互相垂直的平行四边形是菱形,故原说法错误;

D、四个角都相等的四边形是矩形,说法正确;

故选C.【点睛】本题考查平行四边形、菱形、矩形、正方形的判定,关键是熟练掌握特殊四边形的判定方法.10、B【解析】

要求PE+PC的最小值,PE,PC不能直接求,可考虑通过作辅助线转化PE,PC的值,从而找出其最小值求解.【详解】如图,连接AE,因为点C关于BD的对称点为点A,所以PE+PC=PE+AP,根据两点之间线段最短可得AE就是AP+PE的最小值,∵正方形ABCD的边长为3,BE=2,∴AE==,∴PE+PC的最小值是.故选:B.【点睛】此题主要考查了正方形的性质和轴对称及勾股定理等知识的综合应用.根据已知得出两点之间线段最短可得AE就是AP+PE的最小值是解题关键.11、D【解析】

总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】样本是抽取150名考生的中考数学成绩,故选:D.【点睛】此题考查总体、个体、样本、样本容量,难度不大12、B【解析】

反证法的步骤中,第一步是假设结论不成立,反面成立.【详解】解:用反证法证明“三角形的三个外角中至多有一个锐角”,应先假设三角形的三个外角中至少有两个锐角,故选B.【点睛】考查了反证法,解此题关键要懂得反证法的意义及步骤在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.二、填空题(每题4分,共24分)13、1【解析】

由平行四边形的性质可得S△EHB=S△EIH,S△AEF=S△EFJ,S△DFG=S△FKG,S△GCH=S△GHL,由面积和差关系可求四边形IJKL的面积.【详解】解:∵AB∥IL,IJ∥BC,∴四边形EIHB是平行四边形,∴S△EHB=S△EIH,同理可得:S△AEF=S△EFJ,S△DFG=S△FKG,S△GCH=S△GHL,∴四边形IJKL面积=四边形EFGH面积−(四边形ABCD面积−四边形EFGH面积)=11−(18−11)=1,故答案为:1.【点睛】本题考查了平行四边形的判定与性质,由平行四边形的性质得出S△EHB=S△EIH是解题的关键.14、1.【解析】

设A(m,-1m),则B(﹣mk,-1m),设AB交y轴于M,利用平行线的性质,得到AM【详解】解:设A(m,-1m),则B(﹣mk,-1m),设AB交∵EM∥BC,∴AM:MB=AE:EC=1:1,∴﹣m:(﹣mk)=1:1,∴k=1,故答案为1.【点睛】本题考查的知识点是反比例函数系数k的几何意义,解题关键是利用平行线的性质进行解题.15、1【解析】

将点(1,1)代入函数解析式即可解决问题.【详解】解:∵直线y=kx过点(1,1),

∴1=k,

故答案为:1.【点睛】本题主要考查了一次函数图象上点的坐标特征,解决问题的关键是将点的坐标代入解析式,利用方程解决问题.16、.【解析】

先求得A1(0,1),OA1=1,然后根据正方形的性质求出C1(1,0),B1(1,1),同样的方法求出C2(3,0),B2(3,2),C3(7,0),B3(7,4),……,从而有Cn(2n-1,0),Bm(2n-1,2n-1),由此即可求得答案.【详解】当x=0时,y=x+1=1,∴A1(0,1),OA1=1,∵正方形A1B1C1O,∴A1B1=B1C1=OC1=OA1=1,∴C1(1,0),B1(1,1),当x=1时,y=x+1=2,∴A2(1,2),C1A2=2,∵正方形A2B2C2C1,∴A2B2=B2C2=C1C2=C1A1=2,∴C2(3,0),B2(3,2),当x=3时,y=x+1=4,∴A3(3,4),C2A3=4,∵正方形A3B3C3C2,∴A3B3=B3C3=C2C3=C2A3=4,∴C3(7,0),B3(7,4),……∴Cn(2n-1,0),Bm(2n-1,2n-1),∴B2019(22019-1,22018),故答案为(22019-1,22018).【点睛】本题考查一次函数图象上点的坐标特征、正方形的性质,解题的关键是明确题意,找出各个点之间的关系,利用数形结合的思想解答问题.17、3【解析】

先估算,再估算,根据6-的整数部分为x,小数部分为y,可得:x=2,y=,然后再代入计算即可求解.【详解】因为,所以,因为6-的整数部分为x,小数部分为y,所以x=2,y=,所以(2x+)y=,故答案为:3.【点睛】本题主要考查无理数整数部分和小数部分,解决本题的关键是要熟练掌握无理数估算方法和无理数整数和小数部分的求解方法.18、【解析】

过点E作EM⊥x轴于点M,过点F作FN⊥x轴于点N,根据平行线分线段成比例定理得:NO=2MO=2,从而可得F(2,2),结合E(-1,1)可得直线EF的解析式,求出点G的坐标后即可求解.【详解】过点E作EM⊥x轴于点M,过点F作FN⊥x轴于点N,如图:

∴EM∥GO∥FN

∵2EG=FG

∴根据平行线分线段成比例定理得:NO=2MO

∵E(-1,1)

∴MO=1

∴NO=2

∴点F的横坐标为2

∵F在的图象上

∴F(2,2)

又∵E(-1,1)

∴由待定系数法可得:直线EF的解析式为:y=

当x=0时,y=

∴G(0,)

∴OG=

故答案为:.【点睛】此题考查反比例函数的综合应用,平行线分线段成比例定理,待定系数法求一次函数的解析式,解题关键在于掌握待定系数法求解析式.三、解答题(共78分)19、(1)1;(2)2;(3)不存在.理由见解析【解析】【分析】(1)作AM⊥CD于M,由勾股定理求AM,再得CD=DM+CM=DM+AB;(2)由题意:BP=AB﹣AP=10﹣2t.DQ=3t,根据:当BP=DQ时,四边形PBQD是平行四边形,可得10﹣2t=3t,可求t;(3)作AM⊥CD于M,连接PQ.假设存在,则AP=MQ=3t﹣6,即2t=3t﹣6,求出的t不符合题意,故不存在.【详解】解(1)如图1,作AM⊥CD于M,则由题意四边形ABCM是矩形,在Rt△ADM中,∵DM2=AD2﹣AM2,AD=10,AM=BC=8,∴AM==6,∴CD=DM+CM=DM+AB=6+10=1.(2)当四边形PBQD是平行四边形时,点P在AB上,点Q在DC上,如图2中,由题意:BP=AB﹣AP=10﹣2t.DQ=3t,当BP=DQ时,四边形PBQD是平行四边形,∴10﹣2t=3t,∴t=2,(3)不存在.理由如下:如图3,作AM⊥CD于M,连接PQ.由题意AP=2t.DQ=3t,由(1)可知DM=6,∴MQ=3t﹣6,若2t=3t﹣6,解得t=6,∵AB=10,∴t≤=5,而t=6>5,故t=6不符合题意,t不存在.【点睛】本题考核知识点:动点,平行四边形,矩形.解题关键点:此题是综合题,熟记性质和判定是关键.20、(1)y=﹣2x+2(2)①y=4x+3②24③S=2m-1.【解析】

(1)利用待定系数法可求函数的解析式;(2)①根据题意直接代入函数的解析式求出n,得到D点的坐标,然后由A、D点的坐标,由待定系数法求出AD的解析式;②构造三角形直接求面积;③由点M在直线y=-2x+2得到M的坐标,构造三角形,然后分类求解即可.【详解】解:(1)∵直线y=﹣2x+a与y轴交于点C(0,2),∴a=2,∴该直线解析式为y=﹣2x+2.(2)①∵点D(﹣1,n)在直线BC上,∴n=﹣2×(﹣1)+2=8,∴点D(﹣1,8).设直线AD的解析式为y=kx+b,将点A(﹣3,0)、D(﹣1,8)代入y=kx+b中,得:,解得:,∴直线AD的解析式为y=4x+3.②令y=﹣2x+2中y=0,则﹣2x+2=0,解得:x=3,∴点B(3,0).∵A(﹣3,0)、D(﹣1,8),∴AB=2.S△ABD=AB•yD=×2×8=24③∵点M在直线y=-2x+2上,∴M(m,-2m+2),当m<3时,S=即;当m>3时,即S=2m-1.21、(1)见解析;(2)的面积为15.【解析】

(1)根据角平分线上的点到角的两边距离相等证明,再得到结论;

(2)利用勾股定理列式求出BC,再根据△ABC的面积列出方程求出DE,然后根据三角形的面积公式列式计算即可得解.【详解】(1)∵,,∴∵平分,∴,又∵,∴∴.(2)在中,,,,由勾股定理得:,∴.,在中,由(1)可设,由勾股定理得:,解得,∴的面积为,∴的面积为.【点睛】考查了角平分线上的点到角的两边距离相等的性质,勾股定理,难点在于(2)利用三角形的面积列方程求出DE.22、(1),点的坐标为;(2)函数图象见解析,x<1;(2)点Q的坐标为(-5,0)或(11,0).【解析】

(1)根据待定系数法求出一次函数解析式,与联立方程组即可求出点P坐标;(2)画出函数图象,根据图像即可写出当时的取值范围;(3)根据△PQB的面积为8,求出BQ,即可求出点Q坐标.【详解】解:(1)将,代入,得解得,,∴直线AB解析式为,一次函数,与正比例函数联立得解得点的坐标为;(2)如图,当时的取值范围是x<1;(3)∵△PQB的面积为8,∴,∴BQ=8,∴点Q的坐标为(-5,0)或(11,0).【点睛】本题考查了待定系数法求函数解析式,一次函数与二元一次方程(组)关系,解题关键是明确两个一次函数解析式组成二元一次方程组的解即是两直线的交点坐标.解第(3)问时注意点Q分类讨论解题.23、【解析】

先求出,再由待定系数法求出直线的解析式.【详解】解:,,,,在轴正半轴,,设直线解析式为:,∵在此图象上,代入到解析式中得:,解得.直线的函数解析式为:.【点睛】主要考查了待定系数法求一次函数解析式,一次函数图象上点的坐标特征,解本题的关键是熟练掌握待定系数法.24、(1)证明见解析;(2)平移的距离是个单位.(3)点Q的坐标为或或

【解析】

根据AAS或ASA即可证明;首先求出点D的坐标,再求出直线的解析式,求出点的坐标即可解决问题;如图3中,作交y轴于P,作交AB于Q,则四边形PCDQ是平行四边形,求出直线PC的解析式,可得点P坐标,点C向左平移1个单位,向上平移个单位得到P,推出点D向左平移1个单位,向上平移个单位得到Q,再根据对称性可得、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论