版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Makingbigdataworkforcommodities
FromautomationtoAI,andcodingwithPythonto
democratiseddatasets,commoditytradingisundergoingadigitaltransformation
TheExxonValdezranagroundonMarch24,1989.Asitdidso,250,000barrelsofcrudeoilgushedfromthedamagedshipandimpactedtheAlaskashoreline.
Theaccidentwasanenvironmental,legalandreputationaldisaster–butitalsosetoffachainofeventsthatwouldupendtheglobalshippingindustryforever.
Introduction
Analysisiskeytocreatinginsight–andthere’smoretoanalysethanever
Theyearafterthevesselcrashed,politiciansintheUnitedStatespassedlawsaimingtopreventsimilarsignificantoilspills.Withintheselawswastheobligationthatsometankersshouldusevesselmonitoringandtrackingtechnology.Ifsuchshipscouldbetrackedelectronically,theargumentwent,therewouldbegreatertransparencyabouttheirmovements,alowerchanceofcollisions,andportscouldgainabetterunderstandofaship’sactions.Similarsystemsweresimultaneouslybeingdevelopedandtestedbyotherauthoritiesaroundtheworld.
By2000,everythinghadchanged.TheInternationalMaritimeOrganisation(IMO)adoptedanewrequirementforallvesselsoveracertainsizetouseautomaticidentificationsystemtransponders,knownasAIS.Thetechnology,whoseadoptionbecameeffectivein2004,workslikeGPStrackingforships,andincludesavessel’sidentity,location,speed,directionoftravelandplanneddestination.
Now,AISdatapowerswebsitesthattrackshipsallaroundtheworld,andtheinformationisfedintothecommercialsystemsofmultipleindustries–includingthoseoftradersandcommoditiestraders.Theradicalimprovementsintechnologyhaveenabledthetrackingofshipsinreal-timetobecomeroutine.Forcommoditiestraders,theavailabilityofthisinformationopensupthepotentialtomakesmarter,data-informeddecisionsaboutthemovementofgoods–fromcottontooilandmetal–aroundtheworld.Theavailabilityofthistypeofinformation,amongavarietyofsimilarsources,isincreasinglybecomingthecornerstoneoffundamentalstrading,whichseekstobuildapictureoftheworldusingdata.
AISisonlyonedatasource–marinerscan,ofcourse,turnofftheirAISbroadcaststoevadetracking,buttherearenowfewerwaystohidethaneverbefore.Theintroductionoflowcostsatellitesandhigh-resolutioncamerasallowstheEarth(andseas)tobephotographedatalltimes.“Youcanbeobservedbysatelliteimagery,”saysLeighHenson,theglobalheadofcommoditiestradingdivision,atRefinitiv.“Andevenifthere’scloudcover,theycanlookatyourlocationusingradar”.
Machinelearningisevenmakingitpossibletocombinethesedatasourcesandautomaticallywatchthemovementofvesselsovertime.Thesedatasciencetechniqueshavecaughtshipsillegallyfishing,smugglinggoodsandbreakinginternationallaws.Mostrecently,shipshavebeenfoundtamperingwithAISsignalsandbroadcastingfalseones;combiningdataandmachinelearninghasallowedthemtobecaughtintheact.
Theexplosionofdataisnotuniquetoshipping.Acrossallcommoditiestherehasbeenanincreaseintheavailabilityofdataaboutwhatishappeningintherealworld.Cheapsensors,ubiquitousinternetconnectionsandreal-timemonitoringmakeitpossibletotrackandquantifyvastswathesofthecommoditiesindustry.Oilstoragetankscanbemonitored.Methaneemissionscanbetracked.Theflowsofoilpipelinescanbewatched.“Increasinglysophisticatedtypesofobservationsarejustsproutingupallthetime,”Hensonsays.
Asthispictureoftheworldhasgrowninscope,sotoohasfundamentalstradingbecomeevermoresophisticated.Itisnowbasedonthousandsofdailynewsreports,billionsofdatapointsfromvastnumbersofsensors,almost-instantaneousupdatesfromfinancialmarketsandtheproprietarydataheldbycommoditiesfirms.Increasingly,thatsamedataisbeingprovidedbymultiplesources;themeasurementsofoneoilsilocanbetakenbymultiplecompanieswhoprovidetheirdatatothemarket.
Butsimplyamassingdataisnotenoughtogivetradersanadvantageoverthecompetition.Traderswhohavebeenequippedwiththerightanalyticaltools,includingtheabilitytoautomateresearchandvisualisegoodsbeingmoved,areabletounderstandtheworldinamuchmoregranularway.Beingabletoeffectivelyutilisethisknowledgewillbecomeincreasinglycriticalduringthecomingyears.Astechnologymakestradingmoreautomated,everysecondmatters.Companiesneedtobeabletoquicklyanalyseandvisualisethedatatheyhave,whilestaffneedtheskillstooperateanalyticaltoolsandgaininsights.Andthewholeprocessstartswithdatamanagement.
Thise-book,whichispartofafour-partseries,outlinesthekeydatapracticesandtechniquesthattradersandanalystsshouldbeputtinginplacetogainanedge.Itexploreshowthecommoditiesindustryhasbeenrevolutionisedbydataandthestepsneededtoingest,standardise,analyseandvisualisedata.Withouttheseprocessesinplace–eitherinternallyorbeingprovidedbythird-parties–tradingcompaniesarelikelytofallbehindthecompetitioninanincreasinglydigitisedworld.
Meetingthechallengeofanever-growingdatadeluge
Withannualinputsnowbeingmeasuredinzettabytes,there’smoreinformationavailablethanhumantraderscanrealisticallymanage
Theageofdatahasfundamentallychangedhowcommoditiestradingworks.Tento15yearsago,saysAlessandroSanos,globaldirector,salesstrategyandexecutionforcommoditiesatRefinitiv,traderswouldbasetheirdecisionsaroundexclusiveaccesstoinformation.“Thiswaseitherbecausetheyheldthephysicalassets–mines,plantations,infrastructure–orbecausetheyhadaccesstoinformationthroughanetworkofcontacts,orbootsontheground,”Sanossays.Whenitwastimefortradestobemade,theypickedupthephone.
Now,itisdataandtechnologythatdrivedecisionsandtransactions.Inallareasoflife,colossalamountsofdataarebeingproducedeverysingleday.AnalysisfirmIDChaspredictedthat,by2025,theworldwillbecreating163zettabytesofdataeveryyear,agiganticleapupfromforecastsof33zettabytesofdatabeingcreatedin2018.Toputitintophysicalterms,ifallthedatastoredbyRefinitivalonewasburnedontoDVDs,andthediscsstackedontopofeachother,theywouldtowerthreetimeshigherthanLondon’s310-metretallShardskyscraper.
“Dataisarguablythenewcurrency,”saysHilaryTill,theSolichscholarattheUniversityofColoradoDenver’sJ.P.MorganCenterforCommodities.“Tradersareattemptingtoacquireevermorenoveldatasets,especiallyinnichemarkets”.Thismassiveavailabilityofdatahasessentiallyledtoitsdemocratisation–itiseasierthaneverbeforeforcompaniestogatherdataaboutthemovementofcommodities.“Knowledgeisthemostvaluablecommodity,”Sanossays.“Today,thereareliterallythousandsofsourcesofdataavailable.Thosecompaniesabletoassimilatethisinformationtsunamianddetectthesignalfromthenoisewillemergeasthefutureleaders.”
Broadly,therearefourdifferenttypesofexternaldataproviderswhichcommoditiestradingspecialiststurnto.Eachprovidesadifferentkindofinformation,andinsomecases,maybetheonlysourceof
thatdata.Thefirstarethegovernmentagenciesthatcontroltheflowofinformationfromtheirlocalities.Secondly,therearecommercialorganisationsandbigdataprovidersthatholdcertaindatasets,suchastheweatherornewsdata,instructuredways.Thirdly,thereareinternationalmonitoringorganisationssuchastheInternationalMaritimeOrganisation,thebodythatintroducedAISdatatoshipping.Finally,therearetheexchangesthatdealwithtradingdata.Someofthesedatasourcesareavailableforfreeonline,butothersrequiresubscriptionsandcommercialdeals.
“Inonesense,dataismoredifficulttocomeby,sincedatavendorsfullyappreciateitsvalue,”Tillexplains.“However,inanothersense,dataiseasiertocomebyinthatsomedatasetssimplydidnotexistinthepast–atleastcommercially–thatdosonow.”Collectingallthisdataandmakingitavailabletopeoplehasclearadvantages.Byprovidingdetailedmarketinformationalongsidefundamentaldata,Refinitivisabletobringgreatertransparencytothemarket.Ithasneverbeeneasierforcompaniestounderstandwhereandhowcommoditiesarebeingmovedandsold.
MichaelAdjemian,anassociateprofessorofagriculturalandappliedeconomicsattheUniversityofGeorgia,saysdatacollectionwithinagricultureischangingboththeagriculturalindustryandtheworldoftrading.“Satellitedataonweatherandproductionpatterns,aswellasdatageneratedbyGPS-equippedtractors,dronesandsoil-sensingapplications,areregularlyintegratedintoreal-timedashboardstoimprovetheinformationavailabletodecisionmakersinthefinancialeconomies,”hesays.Adjemianaddsthatthiswillbecrucialgivengrowingworldwidedemandsforfoodandthechallengeoftheclimatecrisis.
Butcollectingmassesofdatacausesitsownchallenges.Thevolumeofdatahasbecomeincomprehensibleforhumans,andbeingabletomakethemostofitrequiresbeingabletoeffectivelyanalyseit.It’snowcrucialthatdatacanworkwithotherdata.“Thecompetitiveadvantageisreallyevolvingfrombeingabletoaccessthoseadditionalsourcesofdata,tohowwellcompaniescanintegrateit,commingleitwiththedatathattheyalreadyproducethemselves,andthenapplytechnologytogenerateinsights,”Refinitiv’sSanossays.
Thechallenge:findinginsightsindatafromawidevarietyofsources
Preparingforsuccess:gettingyourdatareadyforbusiness
Withthepropertools,datafrommultiplesourcescanbestandardisedandmerged,pavingtheawayforautomationandartificialintelligence
Commoditiestradinghasbeentransformedinthelasttwodecades–butthereisevengreaterchangecoming.Artificialintelligence,sophisticatedanalyticstoolsandvastlyimprovedvisualisationmethodspointtoafuturethatincludesincreasedautomation–butthisdoesn’tnecessarilymeanreplacinghumantradersandanalysts.Automationcanincludefarmoreeffectivedataprocessingandasophisticatedapplicationofavailableinformation.Essentially,machinescanminedataforintelligence;humanscanthenactuponit.
Buttheuseofdatacan’tbesuperchargedifitsfundamentalcomponentsaremissing.Companiesandtradersneedtoproperlyingestdataintotheirsystems,makesureitisstandardised,usedatasciencetoanalyseit,andunderstandthetoolsneededtovisualisethisanalysisandmakeitunderstandableforpeopleontheground.
Thetaskofpreparingdataforthefutureisn’taneasyone,Sanossays.Itis,however,achallengethatRefintivhasasolutionfor.Refinitiv’sDataManagementSolution(RDMS)isaplatformthatallowscompaniestocombineRefinitiv’smultiplesourcesofcommoditydataintotheirownprocesses.Datacanbemergedandnormalised,anditactsasawayforclientstostandardisedatafromRefinitivalongsidethird-partydataandtheirowninformation.
Justhavingthedataisn’tenough:italsoneedstobeoptimised
13
Disparatedataunited
Combiningmultiple,continuouslyupdatedsourcesintovastdatabasescanyieldexceptionalinsights–iftheycanbenavigatedandparsed
Thedataexplosionhascreatednewchallengesforcompanies.“Youalsoneedsomewheretoputitall,”saysRefinitiv’sHenson.Companiesneedtomakethemostofthedatatheyarecollecting–oraccessingfromthirdpartiessuchasRefinitiv–andneedtocreatesuitableenvironmentswhereitcanbecollectedandaggregated.However,Hensonexplains,increasinglycompaniesarelookingtoaccessandmanipulatedataremotely,addingthattradersandanalystswanttoconnecttodatafeeds–andtheningestitintoevenbiggerdatabases.
It’sherewherethecloud’squickstartuptimesandseamlessabilitytoexpandasrequiredcomeintoplay.BytakingadvantageofcloudhostingandmakingdataavailableinApplicationProgrammingInterfaces(APIs),itispossiblefortraderstoeasilyaccesshugedatastreamsandusetheminthewaystheydesire.Forinstance,Refinitiv’sRDMSallowsanalyststocreatewaystoseehowmuchoilisbeingmovedfromonelocationtoanother.HensonalsoexplainsthatRefinitivprovidesdataenvironmentsinitsterminalproduct,Eikon,whichholdsmorethan2,000pricingdatasources,with1,300providerssendingreports.Itcanalsobeusedinvirtualofficestoaidremoteuse.ThecompanyestimatesthatEikonDatacanbeaccessedandsharedeasily,andsubsequentlyactedupon.Thisdatacanthenbeaccessedandsharedeasily,andsubsequentlyactedupon.
Combiningdatastreamsallowstraderstobuildcustomdatabases
Buildinginsightsonstandardiseddata
Normaliseddatasetsarethefoundationsofinformeddecision-making
Makingonesetofdataworkwithothersetsofdataisn’taneasytask.Asanexample,datamustfirstbenormalised,andfieldsinonedatabaseneedtomatchthoseinanotherdatabaseiftheyaregoingtobesuccessfullycombined.Ifthatdoesn’thappen,theresultmaybeaninaccuratepictureoftheworld–anditmaysubsequentlybeharderfortraderstomakeaccuratedecisionsasaresult.
Sanossaysthechieftechnologyofficershespeakstoarefrustratedabouttheamountoftimetheirdatascientistsandstaffarespendingcleaningupdatasetsinordertooptimisetheirusefulness.“They’retellingmetheiranalystsspendupto90percentoftheirtimejustdoingthisaggregationandnormalisationofdata,”heexplains.Spendinglongermakingdatacompatiblemeanslesstimeisspentanalysingthedataandmakingdecisionsbasedontheintelligenceitprovides.Formanycompanies,theprocessofamassingdatasourcesandstandardisingtheinformationisbestlefttothirdparties.However,Refinitivhasdedicatedteams–locatedinBangalore,Manila,IndiaandPoland–thatanalyseincomingdatasetsandensuretheyarecompatible.Theytakedisparatesourcesofdataandmakeitpossibleforthemtobeeasilycomparedtootherdata.
Fortraders,takinginalreadystandardiseddatasets(throughAPIsordesktopsoftware)thatarereadytobemixedwithproprietaryorthird-partydatacanvastlycutdownontheamountoftimeneededtomaketradingdecisions.“Previously,ourcustomersmayhavebeenhappywithjustonesourceofoilflowsandcargotracking,”explainsSimonWilson,headofoiltradingatRefinitiv.“Now,theywanttotakemultiplesources.”Headds:“Weintegratetwoorthreesourcessothattheycangetablendedviewofthecargotracking.”Thisapproachcanhelptradersmakemoreinformeddecisions.
Oncedatahasbeeningestedandnormalised,itcanthenbepassedthroughanalyticstools,visualisationprocessesand–increasingly–artificialintelligenceandmachinelearningsystems.
Accuratetrackingofcargoneedsdatathathasbeenstandardised
13
Codingiskeyforanalytics
Beingabletointerrogatedataisavitalskillfortraders,andPythonisthetoolofchoice,offeringversatilityandeaseofuseforidentifyinginsights
GonearethedaysofsolelyusingMicrosoftExcelforanalysis–thedatasetsandsourcesavailabletotradersarenowtoolargeforthespreadsheetsoftware,andsonewertoolsareneededtoeffectivelyanalysebigdata.ThecodinglanguagePython,whichisusedacrosswebdevelopmentandanumberofplatforms,isincreasinglybecomingthesystemofchoiceforanalystssiftingtheirwaythroughdataintheworldoffinancialservices.It’soutstrippingbothJavaandC++asthego-tocodinglanguage.
Python’sgrowthisdowntotheeaseofwritingandthehugeamountofpre-writtencode,availablethroughdatasciencelibraries,thatisaccessibleonline.ThelanguageisalsoflexibleenoughtoenablecodetoberuninthecloudorputintoAPIs,andit’soneofthecornerstonesofemergingmachinelearningandartificialintelligencetools.Itisincreasinglybeingusedtomodelfinancialmarketsandhandlethevastamountofdatathat’sgathered.
TheriseofPythonischangingtheskillsetsoftradingworkforces.Thosewhocancodeareindemandandarebeinghiredbyfinancialservicecompanies–numerouslargebanksareutilisingPython-basedinfrastructurefortheirwork.Infact,somepredictthatmanycommoditiestradinghousesandfinancialserviceswillmostlybehiringonlythosewithPythonskillsinthecomingyears.
UsingPythonhelpsanalyststomanagelargervolumesofdata
Interact.Analysis.Action.
Smarterwaysofpresentingdatarevealsfarmorethanrawnumbersonaspreadsheetcould,meaninginsightsandforecastscanbebetterutilised
Thevalueofanalysingcommoditiesdatacomesfromtheinsightsitcanunlock.Increasinglypowerfulvisualisationtools,alongwithcustominstructioncodewritteninPython,arebeingusedtobringdatatolife.Bymakingtheresultsofanalysisvisual,it’spossiblefortraderstobetterunderstandwhatishappening.
Take,forexample,thetrackingofships.ThroughtheuseofAISdata,eachvesselatseacanbeaccuratelyplacedonmapsoftheworld.It’spossibletoclickonashipandsearchforitsdetails,seeitsposition,movementsanddestination.Divingdeeper,itisevenpossibletounderstandthecargothatitmaybecarryingandinferwhatitsmovementsmightmeanfortradingmarkets.
Butthisisjustthetipoftheiceberg.ToolssuchasPowerBI,TableauandothersareallowingstandardiseddatatohavePythonscriptsrunagainstitandproducenewresults.Thetoolsmakeitpossibletoseebiggerpatternswithinthedataandputthemintoachartforlegibility.Forinstance,aSankeydiagramcouldshowthemovementofindividualgradesofcrudeoilmovingfromWestAfricatoNorthernEurope.Datapresentedinthisfashionisofteneasiertocomprehendthannumbersinatable,andtheprocessallowscurrentandforecastviewsofthemarkettobecreated.Withbetterforecasts,it’sanothertoolthatmakesiteasierfortraderstomakeinformeddecisions.
Visualisationcanenabledeepinsightsfromdensedatasets
Tradingmovestowardsamoreautomated,technologicalfuture
Forbothestablishedcompaniesandrecentupstarts,data-empoweredautomationandvisualisationareanessentialcompetitiveedge
Evengreaterlevelsofdisruptionarecoming.Thelastdecadehasseenthefundamentalscommoditymarketbecomefloodedwiththesenewtypesofdata.Butthedataactsonlyasastartingpoint–whatcanbebuiltontopofitwillprovidenewopportunities.
Entermachinelearningandautomation:since2000,machinelearningtechniques,whichusesophisticatedalgorithmstoexaminedataandidentifypatternswithinit,haveimprovedexponentially,andtheywillonlycontinuetogrowmorepowerfulandadvanced.Muchliketheinfluxofdatafuellingthecommoditiesindustry,thissub-fieldofartificialintelligencehasbeendemocratised.Itispossibleforindividualsorbusinessestofindallthetoolstheyneedtorunmachinelearningapplicationsonlineand,often,forfree.
Throughoutthe2020s,theuseofmachinelearningwillincreaseacrossallindustries.Forcommodities,thiscouldmeanmoreautomatedprocessingofdataandpotentiallyevenchangingthewaythattradeshappen.“Ithinkwe’llseemorealgorithms,”Hensonsays.“We’llseemorecomputerstradinginsteadofpeople.It’sbeengrowingintheequitiesmarketsandit’sdefinitelybeengrowinginthecommoditiesworld,too.”AIcanstepintoperformtasksthataretoocomplexortootimeconsumingforhumans.
Thelevelofdisruptionthatwillactuallyhappenisdifficulttopredict.However,theultimategoalmaybeusingartificialintelligencetoaccuratelyforecastthetradingpriceofindividualcommodities.Itislikelyhumanswon’tbetakenentirelyoutoftheloop,butinsteadreceivegrea
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 贵州财经职业学院《三维建模与渲染》2023-2024学年第一学期期末试卷
- 2025年河北建筑安全员-B证考试题库附答案
- 2025山西建筑安全员-C证考试题库
- 广州中医药大学《纺织信息管理》2023-2024学年第一学期期末试卷
- 2025河北省安全员-A证考试题库及答案
- 广州医科大学《管理学理论教学》2023-2024学年第一学期期末试卷
- 2025安徽建筑安全员《A证》考试题库
- 2025年重庆市安全员考试题库
- 电力电子技术课件软开关技术
- 《英语倒装句》课件
- (一模)株洲市2025届高三教学质量统一检测 英语试卷
- 社区意识形态工作责任制实施细则模版(2篇)
- 矿业公司规章制度汇编
- 介入导管室护士长职责
- 《国家课程建设》课件
- 四川省南充市2023-2024学年高一上学期期末考试 历史 含解析
- 2024-2025学年湖北省武汉市华中师大一附中高三上学期期中英语试题及答案
- 浙江省衢州市2023-2024学年高一上学期1月期末数学试题 含解析
- 大学老师工作述职报告
- 中国风中国武术武术介绍PPT模板课件
- 兖州一中“循环大课堂教学模式”
评论
0/150
提交评论