版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024《高中数学变式教学研究》中期报告——新授课概念性变式教学的三个环节一、设置情景,揭示概念的本质特征(1)知识背景的创设每节新授课要从学生最为熟悉的现实背景、生活背景、历史背景、数学知识背景等出发,设置最能体现新授概念本质特征的知识背景。这是概念性变式教学的切入点。老师要列举学生学习经验中感受最深的例子。概念引入的背景可多可少,原则只有一条:尽可能地揭示概念的本质特征。①班级同学的鞋子尺码:27.5,27,26.5,26,25.5,25,24.5,24,23.5,23。②每个同学的统一营养午餐费:5,5,5,…,5。③能被3整除的所有正整数:3,6,9,…这里列举的三个例子,前两个例子源于学生的生活背景,第三个例子源于学生的数学知识背景。第一个例子中公差小于零,第二个例子中公差等于零,第三个例子中公差大于零。等差数列概念的本质特征是:从第二项起,后一项与前一项的差是一个常数。这个常数(公差)可以是任意的实数。即当时,。(2)特殊情形的考虑从概念的一般性出发,探讨概念的特殊情形。这在新授概念教学中,是学生容易接受的一个学习过程,这样的教学情景不可忽视,它是理解概念一般性结论的基础。我们在这里把对特殊情形的考虑视作为概念性变式教学的特殊情景。这个情景实际上是从概念的局部来解释概念的本质特征,是从学生容易理解的方面入手的。①三个数成等差数列的充要条件:成等差数列。称为的等差中项。②等差数列中,任意相邻三项也成等差数列:成等差数列是和的中项由的任意性,数列成等差数列。③等差数列中,奇数项组成的数列成等差数列,其公差为;偶数项组成的数列成等差数列,其公差为;每隔相同的项组成的新数列,…也是等差数列,其公差为。(3)基本结论的推出从概念的本原出发,进行演绎推理,得出一些基本的结论,如概念衍生出来的性质、定理、公式等。这些结论和新授概念一起成为新授课中的学习要点。我们在这里把基本结论的推演过程视作为概念性变式教学的一般情景。归纳推广:由等差数列的定义,得到:,,,…,。数列是特殊的函数。从函数的角度来看等差数列的通项公式,当公差不为零时,其表达式是关于的一次函数;当公差为零时,是常量函数。点是直角坐标系中直线上离散的点。作为新授概念,从以上的三个方面来理解,是概念性变式教学的三个不同角度,也是概念性变式教学的三个基本维度。在变式教学中,创设背景是概念呈现的孕育过程,是帮助学生进行知识建构的前提。得出了概念,不是概念教学的终结,还需要寻找概念的“知识固着点”,从两个方向进行寻找,最近的方向和较远的方向。最近的方向我们考虑的是概念的特殊情况,较远的方向是从概念出发的一般性推理,直到我们找到本节课新授概念所能依附的“知识固着点”为止,我们把这个环节称之为新授课概念性变式教学的第一个环节。等差数列新授课我们可以把等差数列的通项公式作为概念性变式教学中的“知识固着点”。在“知识固着点”未找到之前,新授概念与“知识固着点”之间存在一个“潜在距离”,我们可以理解为学生的“最近发展区”。为了完成第一环节的教学要求,从变式教学的层面上来说,老师要围绕新授的概念,多角度地设置问题情景,使学生在第一环节就找到“知识的固着点”,使新授概念有一个稳固的外显的“知识抓手”,为后续的概念应用作好充分的准备。二、拓展外延,凸显概念的不变内涵(1)概念的简单外延我们把概念应用的较小适用范围称之为概念的简单外延。较小是一个模糊的量化。在讲完等差数列定义后,一些老师接下来请学生判断给出的具体数列是不是等差数列,如果是的话,说出首项和公差等。这个层次的能力训练要求比较低,实际上我们在背景设置当中,已经做过了这样的训练,这里可以再提高一步,如进行下列层次的变式训练:①已知等差数列的首项和第二项,求出等差数列中的任意项;②已知等差数列的前三项,求出等差数列中的任意项;③已知等差数列的公差和某一项,求出等差数列中的任意项;④已知等差数列中的任意两项,求出等差数列中的公差和通项公式。上面的问题比较简单,其中的实例就不再列举。总结数学思想方法,以不变应万变是概念性变式教学第二环节的着力点。一节课从知识的层面来说,不变的是等差数列的定义和通项公式;从方法层面来说,不变的是突出基本量的数学思想方法。在四个量中,知三必可求一。我们在以上的变式中所凸显的不变内涵是:只要给出两个独立的条件,就可以求出等差数列的首项和公差,所有的问题变式最终都可转化为能够知道等差数列的首项和公差,就可以写出通项公式了。(2)概念的复杂外延我们把概念应用的较大适用范围称之为概念的复杂外延。这也是一个模糊的量化,复杂到什么程度,直到概念应用的边界。如果外延复杂的程度较大就从概念性变式教学过渡到过程性变式教学中去了,概念性变式教学和过程性变式教学的分界在于概念外延中是不是与其他数学知识进行了整合。如果没有和其他知识进行整合,我们还是把这一阶段的变式教学视作为概念性变式教学。如果把等差数列这节新授课限定在四十分钟的时间内完成,恐怕下面的变式教学就来不及了,但我们不能说,概念性变式教学就完成了。本节课的教学重点是等差数列定义和通项公式的应用。即使在第一节课内来不及完成,我们还要延续到下一节课作进一步的变式。①已知等差数列某一项和另外两项的和(差、积、商),求数列的通项;如:在等差数列中,已知,求数列的通项公式。②已知等差数列两组相邻两项(三项、若干项)的和,求数列的通项;如:在等差数列中,已知,求数列的通项公式;③利用等差数列的中项性质,求数列的通项;如:在等差数列中,已知,求数列的通项公式;④已知等差数列两项的和与两项的积,求数列的通项。在等差数列中,已知,求数列的通项公式。能够和等差数列定义和通项公式进行整合的知识点很多,比如后面我们要学习的等差数列的求和公式等,又比如和后面要学习的等比数列的知识进行综合等,当然在这节课里绝对不能出现,因为等差数列的求和公式与等比数列的概念都是我们即将要学习的新授概念。但我们可以出现等差数列定义及通项公式与三角、直线方程、一般函数以及应用问题等知识的整合,但这已经从概念性变式教学过渡到了过程性变式教学了,不属于本文所要探讨的范畴。以上所作的变式都是停留在通项公式本身应用基础上的训练,没有涉及到和其他知识的整合,这些变式问题在知识层面和方法层面上,与概念的简单外延变式问题所要凸显的不变内涵都是相同的,因此,我们把这一环节作为新授课概念性变式教学的第二个环节,第二环节的变式教学的特征是突出不变的概念内涵,是从总结不变的基础知识和基本的方法为着落点的,因此,第二阶段的教学目标仍然是落实数学的双基教学和训练。在第一环节我们找到了“知识固着点”,在第二环节我们又找到了“方法固着点”,这样的概念性变式教学,使得新授的概念得到牢固的掌握。三、变换问题,建构概念的内在体系(1)问题的逆向提出从逆向思维的角度来理解概念。前面的两个环节都是从正面,概念的“标准状态”来理解的,在第三个环节我们试图从概念的“非标准状态”来理解。①已知等差数列的通项公式,求首项和公差;②已知一个数列的通项公式是关于的一次函数式,判断这个数列是不是等差数列?常数列是不是等差数列;③已知一个数列的通项公式,判断这个数列是不是等差数列?如:是不是等差数列?是不是等差数列?④给出一个递推式,判断这个数列是不是等差数列?如:数列满足,这个数列是不是等差数列?第一和第二个例子,实际上是从等差数列通项公式结论展开的逆向变式,第二个例子实际上是寻找数列通项公式成为等差数列的充要条件。第三和第四个例子,也是从数列的通项公式出发进行研究的,也是一个思维的逆向过程。实际上是给出了不是等差数列的反例,这在概念性变式教学中,是十分重要的,反例的构造,可以进一步强化学生对概念正面的理解。(2)问题的异化形式变式教学中有一个重要的理论叫作“马顿理论”,认为新授概念的学习,是和其他知识进行比较和鉴别的过程,“鉴别”和“差异”是这个理论的核心。我们已经从概念的正面和反面进行了比较和鉴别,但还没有从过程性变式教学的角度,把等差数列的定义以及通项公式的学习放到与其他知识的综合环境中加以鉴别和联系,但对于具有异化形式的相近问题,我们可以在新授课概念性变式教学中作出初步的鉴别,鉴别的过程是对差异的进一步认识。①设数列满足且,求数列的通项公式;②设数列满足,,求数列的通项公式。第一个问题实际上是鉴别由生成的一个新数列,学生还是能够鉴别出来的。第二个问题有点困难了,需要作如下变形:,然后再来鉴别。异化形式的问题比较困难。因此,我们把它放在第三个环节加以呈现,这也是概念性变式教学的重要环节,我们把它设定为新授课概念性变式教学的最后一个环节,我们要把握好异化问题出现的时机,过早出现,适得其反,不利于概念正面的理解,但缺乏这个环节,学生的鉴别能力得不到提高。整个第三个环节,我们都是从学生思维能力提高的层面提出的,新授概念课教学,不能形成这样的教学模式:先匆忙推出结论,然后举几个例子。例子之间又缺乏关联,这样的教学是不能健全学生完整的知识体系的,不但新学的知识不牢固,而且学到的知识也不成体系。如果说第一环节我们侧重的是多角度的变式教学,则第二个环节是由多角度的变式教学到多层次变式教学的过渡,而第三个环节我们侧重的是多层次的变式教学。在这三个环节基础之上的更高层次的变式教学就要进入到过程性变式教学中研究了。2024《数学学科素养的培养》课题结题报告课题的基本情况:(一)课题的界定教育部《普通高中数学课程标准》修订组组长、博士生导师王尚志教授提出,中国学生在数学学习中应培养好数学抽象、逻辑推理、数学建模、数学运算、直观想象、数据分析六大核心素养。(二)课题研究的目的意义(1)加深知识理解。数学抽象能够使学生化繁为简,更好地理解知识。通过逻辑推理核心素养的培养,学生不仅掌握推理的基本形式及其蕴含的思想方法,而且有助于学生理解数学知识之问的联系从而建立知识体系。因此,学生在学习中能够有意识地把所学的知识联系起来,加深记忆,充分利用已知条件,把复杂的问题转化为简单的问题来解决。(2)提高应用能力。数学运算核心素养有助于形成程序化思考问题的习惯,养成实事求是的科学精神。学生掌握数学建模过程,能够把实际问题转化为数学问题,用数学语言表述和数学知识解决问题,促进学生积极主动地去思考、分析、探索、联想,尝试解决问题。整个过程学生不仅对问题解决有了整体的认识,还意识到数学源于生活又作用于生活。(3)塑造理性精神。数学是一种理性的精神,它追求的是真理,促进人们认识世界和发展自己。通过不断批判和反思,探索知识的真正内涵。六大数学核心素养使得学生具有探索事物本质、追求真理、建构知识、发现规律和创新的意识,塑造了理性精神,使得人们勇于摆脱原有束缚,从新的角度看待事实真相,找到有力的证据,解放人们思想,进而影响个体的思维和能力。(4)增强创新意识。乔布斯认为创新是把各种事物整合到一起,是无极限的,有限的是想象力。创造性思维是建立在批判性思维之上,需要用批判的眼光看待事物,对其进行理性思考,在否定中发现问题、提出问题。在解决问题时,抽象思维帮助人们看到问题的本质,直觉往往在选择方法中发挥着重要作用,再运用分析思维对其进行逻辑推理,最终提出解决方案。(三)国内外研究现状:近年来,随着世界教育改革浪潮的推进,世界各国(地区)与国际组织相继在教育领域建立学生核心素养模型,以此推进教育目标的贯彻与落实,改革教育评价方式,促进教育质量的提高。2007年英国修订《国家课程》对核心素养有了更为清晰和全面的表述,其分别从课程目标、学科重要性、关键概念、关键过程和内容范围几个方面,对跨领域和学科特异性的学生发展所需具备的素养和能力进行了系统而完整的阐述。国内关于“核心素养”的研究在2015年11月举办的第五届基础教育改革与发展论坛上,教育部基础教育课程教材发展中心副主任刘月霞在报告中描绘了数学学科素养的构成:数学抽象、逻辑推理、数学建模、直观想象、数学运算、数据分析。(四)课题研究的目标和主要内容(1)研究的目标通过这个课题研究,达到在今后教学中,能够把所研究的成果运用到教育教学中,并形成一套适合我校校情的高中数学学科素养培养的理念。新的课程标准中,给出了数学学科核心素养的六个主要方面,即数学抽象、逻辑推理、数学建模、运算能力、直观想象和数据分析,并从概念的界定、及其在数学与生活中的作用和意义方面进行了描述。(2)课题研究的内容:1、数学抽象能力:抽象出数学本质牲的能力2、逻辑推理能力:依据前提按照逻辑规则推理的能力3、数学建模能力:对现实生活中的问题建立数学模型能力4、数学运算能力:包括数、代数式、算法等运算的能力5、直观想象能力:借助空间想象感知食物形态与变化的能力6、数据处理能力:收集、分析、处理数据的能力(五)研究对象与范围研究对象是本校高中部全体学生。(六)课题研究的思路、过程和方法根据课题开展思路,课题组将本课题分为四个阶段:第一阶段(20**年6月—20**年7月):课题的申报与修正阶段参照《高中数学课程标准》中对高中学生的运算能力的要求、国内外专家的先进教育教学和中学生心理特点、认知水平等相关理论研究学习、文献查阅、专家咨询。第二阶段(20*.9—20**10):研究对象的确定与资料收集阶段第三阶段(20**.10—20**.5):课题研究实施阶段:1、将第二阶段(准备阶段)中收集记录加以仔细分析2、广泛阅读相关的理论书籍,上网查阅相关资料,研究学生的学习心理,学习同行经验,结合组员的研究,认真备课在教学设计中加以体现。3、在课题研究小组成员所带班中初步实施研究方案。4、通过教中研、研中教,不断总结修正实施方案。5、不断调整总结完善实施方案,作好过程记录。6、试验结果测试得出研究结果。第四阶段(2**5—20**6):实验总结、课题论证、实践检验阶段1、根据第三阶段研究所得出的初步结论,进行验证实验,纠正实验中出现的偏差,并形成实验报告。2、将课题研究内容、过程加以归纳,进行综述,撰写相关的阶段性小结,及时肯定实验成果,修正实验方案,撰写有关论文。二.课题研究的主要过程:在第一阶段,组长仔细研读相关材料,组织课题组成员进行讨论,并且拟定了总纲,然后对小组成员进行了分工第二阶段确定了研究对象为我校高中部全体学生,并且通过网络设计好了问卷,也制作了校本练习,收集了相关的理论书籍,视频,确定好了研究思路第三阶段1.通过问卷调查,仔细
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024物流园区建设与运营管理合同
- 二零二五年度出口退税证明开具与国际物流配送服务合同3篇
- 2024物业租赁合同协议范本
- 2024网络游戏代理运营合同
- 2025年度新型材料研发中心厂房租赁协议范本4篇
- 2025厂区食堂承包合同样本:营养健康食谱定制版3篇
- 2025年度智慧园区场地服务合同范本7篇
- 2024年03月中国银行股份有限公司2024年春季招考笔试历年参考题库附带答案详解
- 2025年度文化产业园场地承包经营合作协议范本4篇
- 2025年度产业园区企业服务中心租赁合同4篇
- 2023光明小升初(语文)试卷
- 三年级上册科学说课课件-1.5 水能溶解多少物质|教科版
- GB/T 7588.2-2020电梯制造与安装安全规范第2部分:电梯部件的设计原则、计算和检验
- GB/T 14600-2009电子工业用气体氧化亚氮
- 小学道德与法治学科高级(一级)教师职称考试试题(有答案)
- 申请使用物业专项维修资金征求业主意见表
- 河北省承德市各县区乡镇行政村村庄村名居民村民委员会明细
- 实用性阅读与交流任务群设计思路与教学建议
- 应急柜检查表
- 通风设施标准
- 酒店市场营销教案
评论
0/150
提交评论