版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
省2018届高中毕业班数学学科备考关键问题指导系列之八平面向量(福建省高中毕业班数学教学指导组;卢燕霞执笔整理)平面向量是高中数学的重要内容,也是高考考查的重要内容之一。高考对这部分的考查常以选择、填空的形式出现,也常与解析几何交汇,题型较稳定,属中档题。平面向量既有代数形式又有几何形式,作为工具的应用,它给平面解析几何奠定了必要的基础。平面向量在高考中主要包含以下几个考点:1)在平面几何图形中主要考查向量加法的平行四边形法则及加减法的三角形法则;2)对共线向量定理的应用,主要考查应用向量的坐标运算求向量的模;3)应用平面向量基本定理进行向量的线性运算;4)应用向量的垂直与共线条件,求解参数;5)对平面向量数量积的运算、化简,向量平行与垂直的充要条件的应用,并以平面向量的数量积为工具,考查其综合应用性问题,常与三角函数、解析几何等相结合。另外,空间向量是平面向量的延伸,本文主要研究平面向量,下面我将对学生存在的主要问题进行剖析,并提出相应的教学对策。一、存在的问题及原因分析问题(一).不能准确理解向量的相关概念概念不清主要表现在向量的概念,平行向量、单位向量的概念;向量夹角的概念等。例1向量,则与平行的单位向量的坐标为解析:因为,所以所求的单位向量为,即与平行的单位向量的坐标为。评析:本题主要考查两个重要知识点,即平行向量和单位向量的概念,因混淆了“与同向的单位向量”和“与平行的单位向量”这两个不同的概念,出现错解:因为故所求向量为,在复习时,只有深刻理解平行向量和单位向量的概念,才能达到正确解题的目的。例2在边长为1的正三角形中,解析:评析:本题主要考查向量夹角的定义及数量积的计算公式,学生易错解如下:.这是由于对两向量夹角的概念理解不到位造成的,所以教学时必须强调两向量夹角的前提是其起点要重合。问题(二)运算理解不到位,不能合理选择算法学生存在的主要问题是:(1)对向量运算理解不到位,比如会错把数的乘法的消去律运用在向量的数量积运算上;(2)算法选择不合理,学生往往选择常规解法,导致过繁运算,计算量过大,甚至无法解答下去。只有熟练掌握向量的运算技巧,根据题设条件合理选择算法,才能达到正确运算的目的。例3已知与之间有关系其中。(1)用表示;(2)求的最小值,并求此时的夹角的大小.解析:(1)要求用表示,而已知,故两边取平方得即∴,即∴(2),即∴的最小值为,又,∴.∴,此时与的夹角为60°评析:本题主要考查向量的数量积公式、向量的模以及将向量问题转化为实数计算的意识,学生可能会把直接坐标化,导致过繁运算,实际还是归结为运算不注意算理的选择.在解决问题时,只有熟练掌握向量的运算技巧,根据题设条件选择合理的算法,才能达到正确运算的目的。例4是平面上一定点,是平面上不共线的三个点,动点满足,则的轨迹一定通过的心.解析:由可得,而的几何意义是的角平分线,且角平分线的交点是三角形的内心,的轨迹一定通过的内心.评析:本题主要考查向量运算的几何意义及向量共线定理.本题学生产生的错因是对理解不够。不清楚的几何意义是与的角平分线有关.的几何意义是与共线同向的单位向量,因此掌握向量运算的几何意义及向量共线定理是关键.问题(三).不能等价转换向量问题学生主要问题体现在:题设条件问题转换不等价,在平时复习中,关注学生对相关概念、定理、公式等的本质的挖掘与掌握至关重要。例5设若与的夹角为钝角,则的取值范围为解析:,因为为钝角,所以且与不共线,即且,所以且.评析:本题主要考查向量的夹角公式,学生易错解如下:,因为为钝角,所以.这是由于问题转换不等价造成的,其实向量与的夹角为钝角的充要条件是且与不共线.这里,与不共线不能忽略.例6向量、都是非零向量,且向量与垂直,与垂直,求与的夹角.解析:由题意,得,①,②将①、②展开并相减,得,即,代入①式、②式均可得,则,设与夹角为,则.又∵,∴.评析:本题主要考查向量的垂直,向量的数量积及夹角公式,本题易出现下列错解:由题意,得,①,②将①、②展开并相减,得,③∵,故,④将④代入②,得,则,设与夹角为,则.又∵,∴.此解法表面上是正确的,但却存在着一个理解上的错误,即由③得到④,错把数的乘法的消去律运用在向量的数量积运算上.深刻理解数量积的运算律,掌握其本质非常关键。问题(四).不能合理选择基底学生主要问题体现在:不能合理选择基底解决问题,原因是学生对于平面向量基本定理并没有真正理解,所以在复习中,深刻理解平面向量基本定理,让学生真正掌握定理的本质及解决问题的技巧是关键。例7在中,,若点D满足,则=()A.B.C.D.解析:法1:=.故选A.法2:特殊化思想:把此三角形特殊为等腰直角三角形,并把点置于原点,且设,则,所以,故选A.法3:因为,由定比分点线性表示知,故选A.评析:本题主要考查平面向量的概念及线性表示,用几个基本向量表示某个向量问题的基本技巧:(1)①观察各向量的位置;②利用回路法,寻找相应的三角形或多边形;③运用法则找关系;④化简结果.也可以利用定比分点,若则.问题(五).不能合理运用向量解决问题考查向量语言,体现向量的的工具性,解决平行与垂直的问题,与三角函数和解析几何的交汇是高考常见题型,学生的主要问题就是缺乏用向量解决问题的意识,导致运算量过大,甚至无法解答下去,因此,在复习中教师应重视向量在这方面的运用指导,引导学生拓展思路,必定会有意想不到的神奇效果。例8在中,内角的对边分别为,已知.(1)求;(2)若,且边的中线,求的值.解析:(1),,,,又,(2)∵为边的中点,∴,两边同时平方,得即,,整理,得,解得或(舍去).∴评析:本题主要考查三角诱导公式,二倍角公式,余弦定理以及应用平面向量解决问题的意识。对于第(Ⅱ)问,题中未出现平面向量,如果按照常规思路,只会想到正、余弦定理及方程思想,则运算量较大,导致解题速度慢或出错.但如果学生有主动运用平面向量的意识,可使代数问题向量化——充分体现向量的工具性、桥梁作用,会大大减少运算量,从而轻松解决问题,体现了不同层次学生的思维能力.二、平面向量复习的思考与对策1.加强概念学习,注重本质理解在平面向量的概念复习中,如何让学生迅速把握住本质,达成理解?重温概念的来龙去脉,理清知识网络,通过比较,对向量的概念进行辨析,在此基础上,抓住向量的两个要素:大小、方向进行拓展,将向量概念精准化.学生存在的问题之一是:概念不清,符号表示混乱,针对此问题,一方面教师在板书、表达等方面一定要准确和多方强调,另一方面,也可设置一些判断题,帮助学生辨析概念.例9下列命题中,真命题的序号为:______.①是四点构成平行四边形的充要条件;②;③单位向量不一定都相等;④若向量满足,则;⑤的充要条件是,且;⑥若,则或;⑦若,则或为零向量.2.加强运算训练,关注算法选择单纯看向量的运算,实际上是比较抽象的.在复习中若能恰当运用模型,运用类比,不仅可以降低难度,而且对于学生认识抽象的运算有很大的好处:比如说:向量这个概念源于物理中的力、位移,那么力的合成、位移的合成实际上就是向量加法的模型,依此为基础很容易理解并记忆平行四边形法则和三角形法则。而向量的减法则可类比于数的减法定义:在实数运算中,减法是加法的逆运算;于是向量的减法也可以看成是向量加法的逆运算;在实数运算中,减去一个数,等于加上这个数的相反数。据此,复习相反向量的概念。要注意向量运算与实数运算的差异,抓住“结果是什么?”“遵循什么样的运算律?”等问题,在类比和辨析中掌握知识。逐渐渗透在集合上定义二元运算的准则.自然形成对于“逆运算”、“逆元”等概念的了解.最终拓展学生对于运算的认识.例10设是已知平面上所有向量的集合,对于映射,记的象为.若映射满足:对所有及任意实数都有,则称为平面上的线性变换。现有下列命题:①设是平面上的线性变换,,则;②若是平面上的单位向量,对,设,则是平面上的线性变换;③对,设,则是平面上的线性变换;④设是平面上的线性变换,,则对任意实数均有.其中的真命题是.(写出所有真命题的编号)3.重视几何特征,关注数形结合在“平面向量”的复习教学中,数形结合是重要的思想方法之一,理解向量线性运算的几何意义更是本专题的教学目标之一,但学生往往不能做到恰当转化.数形结合的关键是把握基本量的代数形式与几何特征之间的联系,一方面复习中要时刻注意二者的联系和相互表达,学会“看图说话”,另一方面也可选择恰当的例题,对某些几何特征量进行归纳,逐渐学会“由数到形”.每种运算都要注意从几何和代数两个方面进行解读,两者并重。但要真正掌握、运用这种思想方法,还需对数和形的实质加以挖掘.比如“向量的加法”复习中,可从“位移的合成”引入三角形法则,这是向量加法的几何法则,将其代数化,就得到:。代数化和形式化并不只是一种简洁的表示,还可挖掘其内在的含义:如这个式子其实可以脱离图形而存在,进一步得到.例11已知正三角形的边长为,平面内的动点满足,,则的最大值是()A.eq\f(43,4)B.eq\f(49,4)C.eq\f(37+6\r(3),4)D.eq\f(37+2\r(33),4)解析:设BC的中点为O,以点O为原点建立如图所示的平面直角坐标系,则B(-eq\r(3),0),C(eq\r(3),0),A(0,3).又|eq\o(AP,\s\up8(→))|=1,∴点P的轨迹方程为x2+(y-3)2=1.由eq\o(PM,\s\up8(→))=eq\o(MC,\s\up8(→))知点M为PC的中点,设M点的坐标为(x,y),相应点P的坐标为(x0,y0),则eq\b\lc\{\rc\(\a\vs4\al\co1(\f(x0+\r(3),2)=x,,\f(y0+0,2)=y,))∴eq\b\lc\{\rc\(\a\vs4\al\co1(x0=2x-\r(3),,y0=2y,))∴(2x-eq\r(3))2+(2y-3)2=1,即,∴点M的轨迹是以H为圆心,r=eq\f(1,2)为半径的圆,∴|BH|=,∴|eq\o(BM,\s\up8(→))|的最大值为3+r=3+eq\f(1,2)=eq\f(7,2),∴|eq\o(BM,\s\up8(→))|2的最大值为eq\f(49,4).4.重视方法训练,关注基底选择通过本专题的复习,研究用向量处理问题的两种方法:“向量法”和“坐标法”.也即面对一个实际问题,要学会选择基底或者建立平面直角坐标系.本质上这两种方法是统一的,其依据都是“平面向量基本定理”,后者是前者的特例.学生往往对于后者较为熟悉,在给定的坐标系中会处理问题,但不善于自己选择基底.事实上,这种熟悉,对于很多学生来说:只是一种简单的模仿和运算,而对于平面向量基本定理并没有真正理解。但课标对于平面向量基本定理的要求,只限于“了解”。因此,若学生程度较好,可在正交基底的基础上,引导学生选择其它的基底解决问题,强化平面向量基本定理的教学.例12中,为直角,,,与相交于点,设,,(Ⅰ)试用表示向量;(Ⅱ)在线段上取一点,在上取一点,使得过点,设,,求证:.解析1:(Ⅰ)以为原点,如图建立平面直角坐标系,设,,则,,设,则根据在直线上,也在直线上,根据斜率公式,可得:,,解之得:,所以.(Ⅱ)由题可得,,由三点共线,可证得.解析2:(Ⅰ)由三点共线可知,存在实数使得;由三点共线可知,存在实数使得;由平面向量基本定理知:,解之得,∴.(Ⅱ)若设,,则,又因为三点共线,所以.例13如图,,点在由射线,线段及的延长线围成的区域内(不含边界)运动,且,则的取值范围是______;当时,的取值范围是______.解析:如图,作交于.则,由点的位置不难知道.因此,,也即的取值范围是当时,,所以此时,的取值范围是.5.强化问题意识,注重向量运用学生的主要问题就是缺乏用向量解决问题的意识,学生处理问题的意识不是一朝一夕形成的,教师要在教学中积极引导学生自觉地思考、转化、构图和变式,让学生不断积累思维和活动经验,要加强教学过程中对学生思维、意识和能力的培养,注重过程强化,关注解题过程的思维达成度,培养学生的悟性。例14设实数满足,,证明:解析:设,则由得,即,,平方并整理得:,故,同理可证,例15如图,在三棱锥中,,,为中点,平面,.(Ⅰ)证明:;(Ⅱ)若,求二面角的余弦值.解析:(Ⅰ)解:连接=1\*GB3①又=2\*GB3②由=1\*GB3①=2\*GB3②及又(Ⅱ)法一:过作交于,连接易得,结合图形知就是二面角的平面角分在中,由等面积法可得,又,二面角的余弦值为法二:连接,由(Ⅰ)知又易得设则过作结合(Ⅰ)知两两垂直可如图建立空间直角坐标系易得,,,,设平面的法向量为可取设平面的法向量为同理可得由图可知二面角为锐角二面角的余弦值为三、典型问题剖析高考对平面向量的考查重点放在平面向量的基本概念、基本运算及其几何意义。主要以选择填空题的形式出现,有时解答题的题设条件也以向量的形式给出,命题的出发点主要是以平面图形为载体表达平面向量,借助向量表达相交或共线等问题,借助平面几何、解析几何等知识,考查线性运算法则及其几何意义以及两个向量共线的充要条件,或以向量为载体秋参数的值。1.平面向量的概念及线性表示例16(2015全国1理7)设为所在平面内一点,,则()A.B.C.D.解析:由题可得,所以,所以.故选A.2.平面向量基本定理及坐标运算例17如图所示,在平行四边形ABCD中,M和N分别为DC和BC的中点,已知,,试用,表示和.解析:因为M和N分别为DC和BC的中点,所以,,于是有.解得,即,.例18已知点P在AB上,O是AB外任意一点,求证:且().解析:因为P在AB上,所以与共线,所以=,故,所以,令,,则且().3.平面向量的数量积例19(2017全国1理13)已知向量的夹角为,,,则.解析:所以.4.平面向量的平行与垂直例20(1)(2015全国2理13)设向量不平行,向量与平行,则实数.(2)(2016山东理8)已知非零向量满足,.若,则实数的值为().A.B.C.D.–解析:(1)根据向量平行的条件,因为向量与平行,所以,则有解得,所以.(2)因为,由,所以,即,所以.故选B.四、过关练习1..已知A,B,C是圆O上的不同的三点,线段CO与线段AB交于点D,若eq\o(OC,\s\up7(→))=λeq\o(OA,\s\up7(→))+μeq\o(OB,\s\up7(→))(λ∈R,μ∈R,则λ+μ的取值范围是()A.(0,1)B.(1,+∞)C.(1,eq\r(2)]D.(-1,0)解析:由题意可得eq\o(OD,\s\up7(→))=keq\o(OC,\s\up7(→))=kλeq\o(OA,\s\up7(→))+kμeq\o(OB,\s\up7(→))(0<k<1),又A,D,B三点共线可得kλ+kμ=1,则λ+μ=eq\f(1,k)>1,即λ+μ的取值范围是(1,+∞),故选B.2.已知非零向量满足,.若,则实数的值为().A.B.C.D.–解析:因为由,所以,即,所以.故选B3.如图,BC,DE是半径为1的圆O的两条直径,eq\o(BF,\s\up7(→))=2eq\o(FO,\s\up7(→)),则eq\o(FD,\s\up7(→))·eq\o(FE,\s\up7(→))等于()A.-eq\f(3,4)B.-eq\f(8,9)C.-eq\f(1,4)D.-eq\f(4,9)解析:∵eq\o(BF,\s\up7(→))=2eq\o(FO,\s\up7(→)),圆O的半径为1,∴|eq\o(FO,\s\up7(→))|=eq\f(1,3),∴eq\o(FD,\s\up7(→))·eq\o(FE,\s\up7(→))=(eq\o(FO,\s\up7(→))+eq\o(OD,\s\up7(→))·(eq\o(FO,\s\up7(→))+eq\o(OE,\s\up7(→))=eq\o(FO,\s\up7(→))2+eq\o(FO,\s\up7(→))·(eq\o(OE,\s\up7(→))+eq\o(OD,\s\up7(→))+eq\o(OD,\s\up7(→))·eq\o(OE,\s\up7(→))=+0-1=-eq\f(8,9).故选B4.△ABC外接圆的半径等于1,其圆心O满足eq\o(AO,\s\up7(→))=eq\f(1,2)(eq\o(AB,\s\up7(→))+eq\o(AC,\s\up7(→)),|eq\o(AO,\s\up7(→))|=|eq\o(AC,\s\up7(→))|,则向量eq\o(BA,\s\up7(→))在eq\o(BC,\s\up7(→))方向上的投影等于()A.-eq\f(\r(3),2)B.eq\f(\r(3),2)C.eq\f(3,2)D.3解析:由eq\o(AO,\s\up7(→))=eq\f(1,2)(eq\o(AB,\s\up7(→))+eq\o(AC,\s\up7(→)))可知O是BC的中点,即BC为外接圆的直径,所以|eq\o(OA,\s\up7(→))|=|eq\o(OB,\s\up7(→))|=|eq\o(OC,\s\up7(→))|.又因为|eq\o(AO,\s\up7(→))|=|eq\o(AC,\s\up7(→))|=1,故△OAC为等边三角形,即∠AOC=60°,由圆周角定理可知∠ABC=30°,且|eq\o(AB,\s\up7(→))|=eq\r(3),所以eq\o(BA,\s\up7(→))在eq\o(BC,\s\up7(→))方向上的投影为|eq\o(BA,\s\up7(→))|·cos∠ABC=eq\r(3)×cos30°=eq\f(3,2),故选C.5.在如图所示的方格纸中,向量的起点和终点均在格点(小正方形顶点)上,若与(x,y为非零实数)共线,则的值为________.解析:.法一:设e1,e2为水平方向(向右与竖直方向(向上的单位向量,则向量c=e1-2e2,a=2e1+e2,b=-2e1-2e2,由与,得,∴e1-2e2=2λ(x-ye1+λ(x-2ye2,∴所以,故.法二:(坐标法)把向量移到向量的起点,易得:,由与(x,y为非零实数)共线,得,即,∴所以,故.6.已知向量eq\o(AB,\s\up7(→))与eq\o(AC,\s\up7(→))的夹角为120°,且|eq\o(AB,\s\up7(→))|=3,|eq\o(AC,\s\up7(→))|=2.若eq\o(AP,\s\up7(→))=λeq\o(AB,\s\up7(→))+eq\o(AC,\s\up7(→)),且eq\o(AP,\s\up7(→))⊥eq\o(BC,\s\up7(→)),则实数λ的值为________.解析:∵eq\o(AP,\s\up7(→))⊥eq\o(BC,\s\up7(→)),∴eq\o(AP,\s\up7(→))·eq\o(BC,\s\up7(→))=0,∴(λeq\o(AB,\s\up7(→))+eq\o(AC,\s\up7(→))·eq\o(BC,\s\up7(→))=0,即(λeq\o(AB,\s\up7(→))+eq\o(AC,\s\up7(→))·(eq\o(AC,\s\up7(→))-eq\o(AB,\s\up7(→))=λeq\o(AB,\s\up7(→))·eq\o(AC,\s\up7(→))-λeq\o(AB,\s\up7(→))2+eq\o(AC,\s\up7(→))2-eq\o(AC,\s\up7(→))·eq\o(AB,\s\up7(→))=0.∵向量eq\o(AB,\s\up7(→))与eq\o(AC,\s\up7(→))的夹角为120°,|eq\o(AB,\s\up7(→))|=3,|eq\o(AC,\s\up7(→))|=2,∴(λ-1×3×2×cos120°-9λ+4=0,解得λ=eq\f(7,12).7.已知点O是边长为1的正三角形ABC的中心,则eq\o(OB,\s\up7(→))·eq\o(OC,\s\up7(→))=__________.解析:.∵△ABC是正三角形,O是其中心,其边长AB=BC=AC=1,∴AO是∠BAC的平分线,且AO=eq\f(\r(3),3),∴eq\o(OB,\s\up7(→))·eq\o(OC,\s\up7(→))=(eq\o(AB,\s\up7(→))-eq\o(AO,\s\up7(→))·(eq\o(AC,\s\up7(→))-eq\o(AO,\s\up7(→))=eq\o(AB,\s\up7(→))·eq\o(AC,\s\up7(→))-eq\o(AO,\s\up7(→))·eq\o(AC,\s\up7(→))-eq\o(AO,\s\up7(→))·eq\o(AB,\s\up7(→))+eq\o(AO,\s\up7(→))2=1×1×cos60°-eq\f(\r(3),3)×1×cos30°-eq\f(\r(3),3)×1×cos30°+eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(3),3)))2=-eq\f(1,6).8.已知平面向量与的夹角为eq\f(π,3),,则__________.解析:.由题意得eq\r(12+\r(3)2)=2,则|a-2b|2=|a|
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度人工智能企业实习生保密协议与AI算法保护合同3篇
- 家居装修合同签订与维权考核试卷
- 酒店宾馆装修合同新
- 南京市建筑装饰装修合同
- 单间出租合同
- 公司合并协议范本
- 2025年全球及中国插座式电源电涌保护器行业头部企业市场占有率及排名调研报告
- 2025-2030全球便携式四合一气体检测仪行业调研及趋势分析报告
- 2025年全球及中国手持式热合机行业头部企业市场占有率及排名调研报告
- 2024年度河南省国家保安员资格考试题库练习试卷B卷附答案
- 心理剧在学校心理健康教育中的应用
- 三年级数学寒假作业每日一练30天
- 人美版初中美术知识点汇总九年级全册
- 食堂服务质量控制方案与保障措施
- VI设计辅助图形设计(2022版)
- 眼科学常考简答题
- 物料分类帐的应用
- 乳房整形知情同意书
- 2022-2023年人教版九年级物理上册期末考试(真题)
- 根因分析(huangyan)课件
- 编本八年级下全册古诗词原文及翻译
评论
0/150
提交评论