山东省日照市岚山区2024届八年级数学第二学期期末预测试题含解析_第1页
山东省日照市岚山区2024届八年级数学第二学期期末预测试题含解析_第2页
山东省日照市岚山区2024届八年级数学第二学期期末预测试题含解析_第3页
山东省日照市岚山区2024届八年级数学第二学期期末预测试题含解析_第4页
山东省日照市岚山区2024届八年级数学第二学期期末预测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省日照市岚山区2024届八年级数学第二学期期末预测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,中,,,则的度数为()A. B. C. D.2.一个长为2、宽为1的长方形以下面的四种“姿态”从直线l的左侧水平平移至右侧(下图中的虚线都是水平线).其中,所需平移的距离最短的是()A. B.C. D.3.观察下列图形,既是轴对称图形又是中心对称图形的有A.1个 B.2个 C.3个 D.4个4.一元二次方程x2+3x=0的解是(A.x=0 B.x=-3C.x1=0,5.如图,在□ABCD中,点E、F分别在边AB、DC上,下列条件不能使四边形EBFD是平行四边形的条件是()A.DE=BF B.AE=CF C.DE∥FB D.∠ADE=∠CBF6.某运动员进行赛前训练,如果对他30次训练成绩进行统计分析,判断他的成绩是否稳定,则需要知道这10次成绩的().A.众数 B.方差 C.平均数 D.中位数7.下列图形中,既是轴对称图形又是中心对称图形的有()A.4个 B.3个 C.2个 D.1个8.在一个晴朗的上午,小丽拿着一块矩形木板在阳光下做投影实验,矩形木板在地面上形成的投影不可能是()A. B.C. D.9.如图,在菱形中,是菱形的高,若对角线、的长分别是6、8,则的长是A. B. C. D.510.在函数y=1x+2中,自变量A.x≠﹣2 B.x>﹣2 C.x≠0 D.x≠2二、填空题(每小题3分,共24分)11.若最简二次根式与的被开方数相同,则a的值为______.12.点A(﹣3,0)关于y轴的对称点的坐标是__.13.在一次测验中,初三(1)班的英语考试的平均分记为a分,所有高于平均分的学生的成绩减去平均分的分数之和记为m,所有低于平均分的学生的成绩与平均分相差的分数的绝对值的和记为n,则m与n的大小关系是

______

.14.已知实数、满足,则_____.15.苏州市2017年6月份最后六大的最高气温分别为31,34,36,27,25,33(单位:℃).这组数据的极差是_____.16.已知Rt△ABC中,AB=3,AC=4,则BC的长为__________.17.某学校为了解本校学生课外阅读的情况,从全体学生中随机抽取了部分学生进行调查,并将调查结果绘制成统计表,如下表.已知该校学生人数为1200人,由此可以估计每周课外阅读时间在1~2(不含1)小时的学生有_________人.每周课外阅读时间(小时)0~11~2(不含1)2~3(不含2)超过3人

数710141918.如图,四边形是正方形,点在上,绕点顺时针旋转后能够与重合,若,,试求的长是__________.三、解答题(共66分)19.(10分)先化简(),再选取一个你喜欢的a的值代入求值.20.(6分)解方程(本题满分8分)(1)(x-5)2=2(5-x)(2)2x2-4x-6=0(用配方法);21.(6分)解下列方程组和不等式组.(1);(2).22.(8分)如图,在一次数学课外活动中,小明同学在点P处测得教学楼A位于北偏东60°方向,办公楼B位于南偏东45°方向.小明沿正东方向前进60米到达C处,此时测得教学楼A恰好位于正北方向,办公楼B正好位于正南方向.求教学楼A与办公楼B之间的距离(结果精确到0.1米).23.(8分)如图,已知BD是△ABC的角平分线,ED是BC的垂直平分线,∠BAC=90°,AD=1.①求∠C的度数,②求CE的长.24.(8分)如图,在▱ABCD中,E是对角线BD上的一点,过点C作CF∥DB,且CF=DE,连接AE,BF,EF(1)求证:△ADE≌△BCF;(2)若∠ABE+∠BFC=180°,则四边形ABFE是什么特殊四边形?说明理由.25.(10分)如图,在平面直角坐标系中,直线与直线相交于点A.(I)求直线与x轴的交点坐标,并在坐标系中标出点A及画出直线的图象;(II)若点P是直线在第一象限内的一点,过点P作PQ//y轴交直线于点Q,△POQ的面积等于60,试求点P的横坐标.26.(10分)知识再现:如果,,则线段的中点坐标为;对于两个一次函数和,若两个一次函数图象平行,则且;若两个一次函数图象垂直,则.提醒:在下面这个相关问题中如果需要,你可以直接利用以上知识.在平面直角坐标系中,已知点,.(1)如图1,把直线向右平移使它经过点,如果平移后的直线交轴于点,交x轴于点,请确定直线的解析式.(2)如图2,连接,求的长.(3)已知点是直线上一个动点,以为对角线的四边形是平行四边形,当取最小值时,请在图3中画出满足条件的,并直接写出此时点坐标.

参考答案一、选择题(每小题3分,共30分)1、B【解析】

设∠ADE=x,则∠B+19°=x+14°,可用x表示出∠B和∠C,再利用外角的性质可表示出∠DAE和∠DEA,在△ADE中利用三角形内角和求得x,即可得∠DAE的度数.【详解】解:设∠ADE=x,且∠BAD=19°,∠EDC=14°,

∴∠B+19°=x+14°,

∴∠B=x-5°,

∵AB=AC,

∴∠C=∠B=x-5°,

∴∠DEA=∠C+∠EDC=x-5°+14°=x+9°,

∵AD=DE,

∴∠DEA=∠DAE=x+9°,

在△ADE中,由三角形内角和定理可得

x+x+9°+x+9°=180°,

解得x=54°,即∠ADE=54°,

∴∠DAE=63°

故选:B.【点睛】本题考查了等腰三角形的性质以及三角形的外角的性质,用∠ADE表示出∠DAE和∠DEA是解题的关键.2、C【解析】

根据平移的性质,利用等腰直角三角形的性质和勾股定理计算出各个图形中平移的距离,然后比较它们的大小即可.【详解】A、平移的距离=1+2=3,B、平移的距离=2+1=3,C、平移的距离==,D、平移的距离=2,故选C.【点睛】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.解决本题的关键是利用等腰直角三角形的性质和勾股定理计算出各个图形中平移的距离.3、C【解析】试题分析:根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,∵第一个图形不是轴对称图形,是中心对称图形;第二个图形既是轴对称图形又是中心对称图形;第三个图形既是轴对称图形又是中心对称图形;第四个图形既是轴对称图形又是中心对称图形;∴既是轴对称图形又是中心对称图形共有3个.故选C.4、D【解析】

用因式分解法求解即可.【详解】解:x2+1x=0,x(x+1)=0,所以x=0或x+1=0,解得:x1=0,x2=-1.故选:D.【点睛】本题考查了一元二次方程的解法,根据方程的特点选择恰当的方法是解决此题的关键.5、A【解析】

根据平行四边形的性质可得AB∥CD,添加DE=BF后,满足一组对边平行,另一组对边相等,不符合平行四边形的判定方法,进而可判断A项;根据平行四边形的性质可得AB∥CD,AB=CD,进一步即得BE=DF,根据一组对边平行且相等的四边形是平行四边形即可判断B项;根据平行四边形的性质可得AB∥CD,进而根据平行四边形的定义可判断C项;根据平行四边形的性质可证明△ADE≌△CBF,进而可得AE=CF,DE=BF,然后根据两组对边相等的四边形是平行四边形即可判断D项.【详解】解:A、∵四边形ABCD是平行四边形,∴AB∥CD,由DE=BF,不能判定四边形EBFD是平行四边形,所以本选项符合题意;B、∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵AE=CF,∴BE=DF,∴四边形EBFD是平行四边形,所以本选项不符合题意;C、∵四边形ABCD是平行四边形,∴AB∥CD,∵DE∥FB,∴四边形EBFD是平行四边形,所以本选项不符合题意;D、∵四边形ABCD是平行四边形,∴∠A=∠C,AD=CB,AB=CD,∵∠ADE=∠CBF,∴△ADE≌△CBF(ASA),∴AE=CF,DE=BF,∴BE=DF,∴四边形EBFD是平行四边形,所以本选项不符合题意.故选:A.【点睛】本题考查了平行四边形的性质和判定以及全等三角形的判定和性质,属于常考题型,熟练掌握平行四边形的判定和性质是解本题的关键.6、B【解析】

根据众数、平均数、中位数、方差的概念分析.【详解】众数、平均数、中位数是反映一组数据的集中趋势,只有方差是反映数据的波动大小的,故为了判断成绩是否稳定,需要知道的是方差.故选:B.【点睛】本题考查统计量的选择,明确各统计量的概念及意义是解题关键.7、C【解析】

根据轴对称图形与中心对称图形的概念进行求解,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.【详解】第1个和第4个图既是轴对称图形又是中心对称图形,中间两个只是轴对称图形,不是中心对称图形.故选C.8、A【解析】解:将矩形木框立起与地面垂直放置时,形成B选项的影子;将矩形木框与地面平行放置时,形成C选项影子;将木框倾斜放置形成D选项影子;根据同一时刻物高与影长成比例,又因矩形对边相等,因此投影不可能是A选项中的梯形,因为梯形两底不相等.故选A.9、B【解析】

由菱形的性质可得AC⊥BD,BO=DO=4,CO=AO=3,由勾股定理可求CB=5,由菱形的面积公式可求AE的长.【详解】解:四边形是菱形,,故选:.【点睛】本题菱形的性质,熟练运用菱形的面积公式是本题的关键.10、A【解析】

根据分式有意义的条件是分母不为2;分析原函数式可得关系式x+1≠2,即可得答案.【详解】根据题意可得x+1≠2;解得x≠-1.故选A.【点睛】本题主要考查函数自变量的取值范围和分式有意义的条件,当函数表达式是分式时,考虑分式的分母不能为2.二、填空题(每小题3分,共24分)11、1【解析】

根据同类二次根式的定义得1+a=4-2a,然后解方程即可.【详解】解:根据题意得1+a=4-2a,

解得a=1.

故答案为:1.【点睛】本题考查了同类二次根式:一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.12、(3,0)【解析】试题分析:因为点P(a,b)关于y轴的对称点的坐标是(-a,b),所以点A(﹣3,0)关于y轴的对称点的坐标是(3,0),故答案为(3,0)考点:关于y轴对称的点的坐标.13、m=n【解析】

根据“平均分的意义和平均分、总分之间的关系”进行分析解答即可.【详解】设初三(1)班这次英语考试中成绩高于平方分的有x人,低于平均分的有y人,等于平均分的有z人,则由题意可得:a(x+y+z)=(ax+m)+(ay-n)+az,∴ax+ay+az=az+m+ay-n+az,∴0=m-n,∴m=n.故答案为:m=n.【点睛】“能够根据:全班的总分=成绩高于平均分的同学的总得分+成绩低于平均分的同学的总得分+成绩等于平均分的同学的总得分得到等式a(x+y+z)=(ax+m)+(ay-n)+az”是解答本题的关键.14、3【解析】

根据分式的运算法则即可求出答案.【详解】解:等式的右边==等式的左边,

∴,解得:,

∴A+B=3,

故答案为:3【点睛】本题考查分式的运算,解题的关键是熟练掌握分式的运算法则以及二元一次方程组的解法.15、32【解析】

根据极差的定义进行求解即可得答案.【详解】这组数据的最大值是36,最小值是25,这组数据的极差是:36﹣25=1(℃),故答案为1.【点睛】本题考查了极差,掌握求极差的方法是解题的关键,求极差的方法是用一组数据中的最大值减去最小值.16、或1.【解析】

根据勾股定理来进行解答即可,本题需要分两种情况进行计算,即BC为斜边和BC为直角边.【详解】根据勾股定理可得:AB=或AB=,故答案为1或.【点睛】本题主要考查的是利用勾股定理求边长的问题,属于基础问题.在利用勾股定理时一定要注意所求的边为直角边还是斜边.17、1【解析】试题分析:先求出每周课外阅读时间在1~2(不含1)小时的学生所占的百分比,再乘以全校的人数,即可得出答案.解:根据题意得:1200×=1(人),答:估计每周课外阅读时间在1~2(不含1)小时的学生有1人;故答案为1.考点:用样本估计总体.18、.【解析】

由正方形的性质得出AB=AD=3,∠ABC=∠D=∠BAD=90°,由勾股定理求出AP,再由旋转的性质得出△ADP≌△ABP′,得出AP′=AP=,∠BAP′=∠DAP,证出△PAP′是等腰直角三角形,得出PP′=AP,即可得出结果.【详解】解:∵四边形ABCD是正方形,∴AB=AD=3,DP=1,∠ABC=∠D=∠BAD=90°,∴AP=,∵△ADP旋转后能够与△ABP′重合,∴△ADP≌△ABP′,∴AP′=AP=,∠BAP′=∠DAP,∴∠PAP′=∠BAD=90°,∴△PAP′是等腰直角三角形,∴PP′=AP=;故答案为:.【点睛】本题考查了旋转的性质、勾股定理、全等三角形的性质、等腰直角三角形的性质;熟练掌握正方形和旋转的性质是解决问题的关键.三、解答题(共66分)19、a2+1,求值不唯一,使a≠±1皆可.【解析】先通分约分进行化简,然后再代入a的值进行计算,但a不能取±1.20、(1)x1=5,x2=3;(2)x1=3,x2=-1.【解析】试题分析:(1)先移项,再提取公因式(x-5),把原方程化为二个一元一次方程求解即可.(2)方程两边同除以2,再把常数项-3移到方程右边,方程两边同时加上一次项系数一半的平方,进行配方,方程两边直接开平方求出方程的解即可.试题解析:(1)移项得:(x-5)2+2(x-5)=0∴(x-5)(x-3)=0即:x-5=0,x-3=0解得:x1=5,x2=3;(2)方程变形为:x2-2x-3=0移项得:x2-2x=3配方得:x2-2x+1=3+1(x-1)2=4x-1=±2解得:x1=3,x2=-1.考点:1.解一元二次方程----因式分解法;2.解一元二次方程---配方法.21、(1);(2).【解析】

(1)用加减消元法或代入消元法先消去一个未知数,化二元为一元,求解即可;(2)首先求出每个不等式的解集,然后找出它们的公共部分,该公共部分就是不等式组的解集.【详解】解:(1)①-②×2,得,.把代入②,得,.∴原方程组的解为.(2)由①,得,.由②,得,.∴原不等式组的解集为.【点睛】本题考查的是解二元一次方程组和解一元一次不等式组,熟知加减消元法和代入消元法是解(1)题的关键,熟知不等式的基本性质是解(2)题的关键;对于求不等式组的解集,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小是空集.22、教学楼A与办公楼B之间的距离大约为94.6米.【解析】

由已知可得△ABP中∠A=60°∠B=45°且PC=60m,要求AB的长,可以先求出AC和BC的长就可转化为运用三角函数解直角三角形.【详解】由题意可知∠ACP=∠BCP=90°,∠APC=30°,∠BPC=45°在Rt△BPC中,∵∠BCP=90°,∠BPC=45°,∴在Rt△ACP中,∵∠ACP=90°,∠APC=30°,∴∴≈60+20×1.732=94.64≈94.6(米)答:教学楼A与办公楼B之间的距离大约为94.6米.【点睛】本题考查了解直角三角形的应用--方向角问题.解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.23、①∠C=10度;②CE=.【解析】

根据线段垂直平分线的性质得到DB=DC,根据角平分线的定义、三角形内角和定理求出∠C=∠DBC=∠ABD=10°,根据10°角所对直角边等于斜边的一半及勾股定理即可得到CE的长.【详解】(1)∵ED是BC的垂直平分线,∴DB=DC,∴∠C=∠DBC.∵BD是△ABC的角平分线,∴∠ABD=∠DBC,∴∠C=∠DBC=∠ABD=10°.(2)∵∠ABD=10°,∴BD=2AD=6,∴CD=DB=6,∴DE=1,∴CE==.【点睛】本题考查了线段垂直平分线的性质、直角三角形的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.24、(1)证明见解析;(2)四边形ABFE是菱形【解析】

(1)根据平行四边形的性质和全等三角形的判定证明即可;

(2)根据平行四边形的性质和全等三角形的判定以及菱形的判定解答即可.【详解】证明:(1)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠ADB=∠DBC.∵CF∥DB,∴∠BCF=∠DBC,∴∠ADB=∠BCF在△ADE与△BCF中∴△ADE≌△BCF(SAS).(2)四边形ABFE是菱形理由:∵CF∥DB,且CF=DE,∴四边形CFED是平行四边形,∴CD=EF,CD∥EF.∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴AB=EF,AB∥EF,∴四边形ABFE是平行四边形.∵△ADE≌△BCF,∴∠AED=∠BFC.∵∠AED+∠AEB=180°,∴∠ABE=∠AEB,∴AB=AE,∴四边形ABFE是菱形.【点睛】本题考查平行四边形的性质,关键是根据平行四边形的性质和全等三角形的判定以及菱形的判定解答.25、(I)见解析;(II)点的横坐标为12.【解析】

(I)将直线与直线联立方程求解,即可得到点A的坐标

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论