




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河南省新乡、开封市名校联考数学八年级下册期末综合测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.下列美丽的图案,不是中心对称图形的是()A. B.C. D.2.如图,以正方形ABCD的顶点A为坐标原点,直线AB为x轴建立直角坐标系,对角线AC与BD相交于点E,P为BC上一点,点P坐标为(a,b),则点P绕点E顺时针旋转90°得到的对应点P的坐标是()A.(a-b,a) B.(b,a) C.(a-b,0) D.(b,0)3.若方程是一元二次方程,则m的值为()A.0 B.±1 C.1 D.–14.在平面直角坐标系中,若直线y=2x+k经过第一、二、三象限,则k的取值范围是()A.k>0 B.k<0 C.k≤0 D.k≥05.下列函数中,y随x增大而减小的是()A.y=x-1 B.y=-2x+3 C.y=2x-1 D.y=6.△ABC中,AB=20,AC=13,高AD=12,则△ABC的周长是()A.54 B.44 C.54或44 D.54或337.下列各式从左到右的变形中,是因式分解的是()A.(a3)(a3)a29 B.a22a3a(a2)C.a24a5(a4)5 D.a2b2(ab)(ab)8.测得某人一根头发的直径约为0.0000715米,该数用科学记数法可表示为()A.0.715×104 B.0.715×10﹣4 C.7.15×105 D.7.15×10﹣59.下列四边形中,不属于轴对称图形的是()A.平行四边形 B.矩形 C.菱形 D.正方形10.一组数据1,3,4,4,4,5,5,6的众数和方差分别是()A.4,1 B.4,2 C.5,1 D.5,211.一个多边形的内角和比其外角和的2倍多180°,那么这个多边形是()A.五边形 B.六边形 C.七边形 D.八边形12.点(3,-4)到x轴的距离为()A.3B.4C.5D.-4二、填空题(每题4分,共24分)13.已知一个凸多边形的内角和是它的外角和的3倍,那么这个凸多边形的边数等于_________.14.已知一次函数的图象过点,那么此一次函数的解析式为__________.15.如图,将正方形ABCD沿BE对折,使点A落在对角线BD上的A′处,连接A′C,则∠BA′C=________度.16.若关于的方程有增根,则的值为________.17.从A,B两题中任选一题作答:A.如图,在ΔABC中,分别以点A,B为圆心,大于AB的长为半径画弧,两弧交与点M,N,作直线MN交AB于点E,交BC于点F,连接AF。若AF=6,FC=4,连接点E和AC的中点G,则EG的长为__.B.如图,在ΔABC中,AB=2,∠BAC=60°,点D是边BC的中点,点E在边AC上运动,当DE平分ΔABC的周长时,DE的长为__.18.如图,菱形ABCD中,E为边AD上一点,△ABE沿着BE折叠,点A的对应点F恰好落在边CD上,则___.三、解答题(共78分)19.(8分)如图,在正方形中,点是边上的一动点,点是上一点,且,、相交于点.(1)求证:;(2)求的度数(3)若,求的值.20.(8分)某欢乐谷为回馈广大谷迷,在暑假期间推出学生个人门票优惠价,各票价如下:票价种类
(A)学生夜场票
(B)学生日通票
(C)节假日通票
单价(元)
80
120
150
某慈善单位欲购买三种类型的票共100张奖励品学兼优的留守学生,其中购买的B种票数是A种票数的3倍还多7张,C种票y张.(1)直接写出y与x之间的函数关系式;(2)设购票总费用为w元,求w(元)与x(张)之间的函数关系式;(3)为方便学生游玩,计划购买的学生夜场票不低于20张,且每种票至少购买5张,则有几种购票方案?并指出哪种方案费用最少.21.(8分)为了更好治理河流水质,保护环境,某市治污公司决定购买10台污水处理设备,现有A,B两种型号的设备,其中每台的价格,月处理污水量如表:
A型
B型
价格(万元/台)
a
b
处理污水量(吨/月)
220
180经调查:购买一台A型设备比购买一台B型设备多3万元,购买2台A型设备比购买3台B型设备少3万元.(1)求a,b的值;(2)经预算:市治污公司购买污水处理设备的资金不超过100万元,你认为该公司有哪几种购买方案;(3)在(2)问的条件下,若每月要求处理的污水量不低于1880吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.22.(10分)如图,在菱形ABCD中,∠ABC与∠BAD的度数比为1:2,周长是1.求:(1)两条对角线的长度;(2)菱形的面积.23.(10分)一只不透明的袋子中装有3个红球、2个黄球和1个白球,每个球除颜色外都相同,将球摇匀,从中任意摸出1个球.(1)摸到的球的颜色可能是______;(2)摸到概率最大的球的颜色是______;(3)若将每个球都编上号码,分别记为1号球(红)、2号球(红)、3号球(红)、4号球(黄)、5号球(黄)、6号球(白),那么摸到1~6号球的可能性______(填相同或者不同);(4)若在袋子中再放一些这样的黄球,从中任意摸出1个球,使摸到黄球的概率是,则放入的黄球个数是______.24.(10分)分解因式:2x2﹣12x+1.25.(12分)某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整.收集数据从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:甲7886748175768770759075798170748086698377乙9373888172819483778380817081737882807040整理、描述数据按如下分数段整理、描述这两组样本数据:成绩人数部门40≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100甲0011171乙(说明:成绩80分及以上为生产技能优秀,70--79分为生产技能良好,60--69分为生产技能合格,60分以下为生产技能不合格)分析数据两组样本数据的平均数、中位数、众数如下表所示:部门平均数中位数众数甲78.377.575乙7880.581得出结论:.估计乙部门生产技能优秀的员工人数为____________;.可以推断出_____________部门员工的生产技能水平较高,理由为_____________.(至少从两个不同的角度说明推断的合理性)26.如图,在□ABCD中,E、F分别是BC、AD上的点,且AE∥CF,AE与CF相等吗?说明理由.
参考答案一、选择题(每题4分,共48分)1、B【解析】
解:A是中心对称图形,不符合题意;B不是中心对称图形,符合题意;C是中心对称图形,不符合题意;D是中心对称图形,不符合题意,故选B.【点睛】本题考查中心对称图形,正确识图是解题的关键.2、D【解析】
如图,连接PE,点P绕点E顺时针旋转90°得到的对应点P′在x轴上,根据正方形的性质得到∠ABC=90°,∠AEB=90°,AE=BE,∠EAP′=∠EBP=45°,由点P坐标为(a,b),得到BP=b,根据全等三角形的性质即可得到结论.【详解】如图,连接PE,点P绕点E顺时针旋转90°得到的对应点P′在x轴上,∵四边形ABCD是正方形,∴∠ABC=90°,∴∠AEB=90°,AE=BE,∠EAP′=∠EBP=45°,∵点P坐标为(a,b),∴BP=b,∵∠PEP′=90°,∴∠AEP′=∠PEB,在△AEP′与△BEP中,∠EAP'=∠EBP∴△AEP′≌△BEP(ASA),∴AP′=BP=b,∴点P′的坐标是(b,0),故选:D.【点睛】此题考查全等三角形的判断与性质,正方形的性质,解题关键在于作辅助线.3、D【解析】
根据一元二次方程的定义:只含有一个未知数,并且未知数的最高指数是2的整式方程,且二次项系数不等于0,即可进行求解,【详解】因为方程是一元二次方程,所以,,解得且所以,故选D.【点睛】本题主要考查一元二次方程的定义,解决本题的关键是要熟练掌握一元二次方程的定义.4、A【解析】
根据一次函数的性质求解.【详解】一次函数的图象经过第一、二、三象限,那么.故选A.【点睛】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.5、B【解析】
∵函数(y=kx+b)中y随x增大而减小,∴k<0,∵只有B选项k=-2<0,其它选项都大于0,∴B选项是正确.故选B.6、C【解析】
根据题意画出示意图进行分析判断,然后根据勾股定理计算出底边BC的长,最后求和即可.【详解】(1)在直角三角形ACD中,有在直角三角形ADB中,有则CB=CD+DB=5+16=21所以三角形的面积为CB+AC+AB=21+13+20=54.(2)在直角三角形ACD中,有在直角三角形ADB中,有则CB=DB-CD=16-5=11所以三角形的面积为CB+AC+AB=11+13+20=44.故答案为:D.【点睛】本题考查了勾股定理的应用,解题关键在于以高为突破点把三角形分为高在三角形内部和外部的两种情况.7、D【解析】
把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,结合选项进行判断即可.【详解】解:A、是整式的乘法,故A错误;
B、没把一个多项式化为几个整式的积的形式,故B错误;
C、没把一个多项式化为几个整式的积的形式,故C错误;
D、把一个多项式化为几个整式的积的形式,故D正确;
故选:D.【点睛】本题考查了因式分解的意义,注意因式分解后左边和右边是相等的,不能凭空想象右边的式子.8、D【解析】0.0000715=,故选D.9、A【解析】
根据轴对称图形的定义:轴对称图形,是指在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形,即可判定平行四边形不是轴对称图形,矩形、菱形、正方形都是.【详解】根据轴对称图形的定义,可得A选项,平行四边形不符合轴对称图形定义;B选项,矩形符合定义,是轴对称图形;C选项,菱形符合定义,是轴对称图形;D选项,正方形符合定义,是轴对称图形;故答案为A.【点睛】此题主要考查轴对称图形的理解,熟练掌握,即可解题.10、B【解析】
根据题目中的数据可以直接写出众数,求出相应的平均数和方差,从而可以解答本题.【详解】数据1,3,4,4,4,5,5,6的众数是4,,则s2==2,故选B.【点睛】本题考查方差和众数,解答本题的关键是明确众数的定义,会求一组数据的方差.11、C【解析】
设这个多边形的边数为n,根据多边形内角和公式和外角和定理建立方程求解.【详解】设这个多边形的边数为n,由题意得解得:故选C.【点睛】本题考查多边形的内角和与外角和,熟记多边形内角和公式,以及外角和360°,是解题的关键.12、B【解析】分析:-4的绝对值即为点P到x轴的距离.详解:∵点P到x轴的距离为其纵坐标的绝对值即|−4|=4,∴点P到x轴的距离为4.故选B.点睛:本题考查了点的坐标,用到的知识点为:点到x轴的距离为点的纵坐标的绝对值.二、填空题(每题4分,共24分)13、1【解析】
根据多边形的内角和定理,多边形的内角和等于(n-2)•110°,外角和等于360°,然后列方程求解即可.【详解】解:设这个凸多边形的边数是n,根据题意得
(n-2)•110°=3×360°,
解得n=1.
故这个凸多边形的边数是1.
故答案为:1.【点睛】本题主要考查了多边形的内角和公式与外角和定理,根据题意列出方程是解题的关键.14、【解析】
用待定系数法即可得到答案.【详解】解:把代入得,解得,所以一次函数解析式为.故答案为【点睛】本题考查求一次函数解析式,解题的关键是熟练掌握待定系数法.15、67.1.【解析】
由四边形ABCD是正方形,可得AB=BC,∠CBD=41°,又由折叠的性质可得:A′B=AB,根据等边对等角与三角形内角和定理,即可求得∠BA′C的度数.【详解】解:因为四边形ABCD是正方形,
所以AB=BC,∠CBD=41°,
根据折叠的性质可得:A′B=AB,
所以A′B=BC,
所以∠BA′C=∠BCA′==67.1°.
故答案为:67.1.【点睛】此题考查了折叠的性质与正方形的性质.此题难度不大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.16、;【解析】
先将m视为常数求解分式方程,得出方程关于m的解,再根据方程有增根判断m的值.【详解】去分母得:2x+1-x-2=m解得:x=m+1∵分式方程有增根∴x=-2∴m+1=-2解得:m=-1故答案为;-1.【点睛】本题考查解分式方程增根的情况,注意当方程中有字母时,我们通常是将字母先视为常数进行计算,后续再讨论字母的情况.17、A.5B.【解析】
A.由作法知MN是线段AB的垂直平分线,所以BF=AF=6,然后根据EG是三角形ABC的中位线求解即可;B.延长CA到点B′,使AB’等于AB,连接BB′,过点A作AF⊥BB′,垂足为F.由ED平分ΔABC的周长,可知EB′=EC,从而DE为ΔCBB′的中位线,由等腰三角形的性质求出∠B=∠B′=30°,从而BF=,进而可求出DE的长.【详解】A.由尺规作图可得直线MN为线段AB的垂直平分线,∴BF=AF=6,E为AB中点,∵点G为AC中点,∴EG为ΔABC的中位线,∴EG∥BC且EG=BC,∵BF+FC=10,∴EG=5;B.如图所示,延长CA到点B′,使AB’等于AB,连接BB′,过点A作AF⊥BB′,垂足为F.∵ED平分ΔABC的周长,∴AB+AE+BD=EC+DC.∵BD=DC,∴AB+AE=EC.∵AB=AB′,∴EB′=EC,∴DE为ΔCBB′的中位线.∵∠BAC=60°,∴ΔBAB′为顶角是120°的等腰三角形,∴∠B=∠B′=30°,∴AF=1,∴BF=,∴BB′=2,∴ED=.故答案为:A.5;B.【点睛】本题考查了尺规作图-作线段的垂直平分线,线段垂直平分线的性质,三角形中位线的性质,等腰三角形的性质、勾股定理,掌握三角形中位线定理、正确作出辅助线是解题的关键.18、35°【解析】
由菱形的性质可得AB∥CD,AB=BC,∠A=∠C=70°,由平行线的性质可得∠BFC=∠ABF,由翻折的性质可得:BF=AB,∠ABE=∠EBF=∠ABF,等角代换可得∠ABF的度数,进而即可求解.【详解】∵四边形ABCD是菱形,∴AB∥CD,AB=BC,∠A=∠C=70°∴∠BFC=∠ABF由翻折的性质可得:BF=AB,∠ABE=∠EBF=∠ABF∴BC=BF∴∠BFC=∠ABF=∠C=70°∴∠ABE=∠ABF=35°故答案为:35°.【点睛】本题主要考查菱形的性质和翻折的性质,解题的关键是利用菱形的性质和翻折的性质求出∠ABF的度数.三、解答题(共78分)19、(1)见解析;(2)∠AGD=90°;(3).【解析】
(1)直接利用正方形的性质得到AD=DC,∠ADF=∠DCE,,结合全等三角形的判定方法得出答案;(2)根据∠DAF=∠CDE和余角的性质可得∠AGD=90°;(3)利用全等三角形的判定和性质得出△ABH≌△ADG(AAS),即可得出的值.【详解】(1)证明:∵四边形ABCD是正方形,∴AD=DC,∠ADF=∠DCE=90°,在△ADF和△DCE中;∴△ADF≌△DCE(SAS);(2)解:由(1)得△ADF≌△DCE,∴∠DAF=∠CDE,∵∠ADG+∠CDE=90°,∴∠ADG+∠DAF=90°,∴∠AGD=90°,(3)过点B作BH⊥AG于H∵BH⊥AG,∴∠BHA=90°,∴∠BHA=∠AGD,∵四边形ABCD是正方形,∴AB=AD=BC,∠BAD=90°,∵∠ABH+∠BAH=90°,∠DAG+∠BAH=90°,∴∠ABH=∠DAG,在△ABH和△ADG中,∴△ABH≌△ADG(AAS),∴AH=DG,∵BG=BC,BA=BC,∴BA=BG,∴AH=AG,∴DG=AG,∴.【点睛】此题主要考查了正方形的性质以及全等三角形的判定和性质,正确得出△ABH≌△ADG是解题关键.20、(1)y=93-4x;(2)w=-160x+14790;(3)共有3种购票方案,当A种票为22张,B种票73张,C种票为5张时费用最少,最少费用为11270元.【解析】试题分析:(1)根据总票数为100得到x+3x+7+y=100,然后用x表示y即可;(2)利用表中数据把三种票的费用加起来得到w=80x+120(3x+7)+150(93-4x),然后整理即可;(3)根据题意得到,再解不等式组且确定不等式组的整数解为20、21、22,于是得到共有3种购票方案,然后根据一次函数的性质求w的最小值.试题解析:解:(1)x+3x+7+y=100,所以y=93-4x;(2)w=80x+120(3x+7)+150(93-4x)=-160x+14790;(3)依题意得,解得20≤x≤22,因为整数x为20、21、22,所以共有3种购票方案(A、20,B、67,C、13;A、21,B、70,C、9;A、22,B、73,C、5);而w=-160x+14790,因为k=-160<0,所以y随x的增大而减小,所以当x=22时,y最小=22×(-160)+14790=11270,即当A种票为22张,B种票73张,C种票为5张时费用最少,最少费用为11270元.考点:1.一次函数的应用;2.一元一次不等式组的应用.21、(1);(2)有四种购买方案:①A型设备0台,B型设备10台;②A型设备1台,B型设备9台;③A型设备2台,B型设备8台;④A型设备1台,B型设备7台;(1)为了节约资金,应选购A型设备2台,B型设备8台.【解析】
(1)购买A型的价格是a万元,购买B型的设备b万元,根据购买一台A型号设备比购买一台B型号设备多1万元,购买2台A型设备比购买1台B型号设备少1万元,可列方程组求解.(2)设购买A型号设备x台,则B型为(10-x)台,根据使治污公司购买污水处理设备的资金不超过100万元,进而得出不等式.(1)利用每月要求处理污水量不低于1880吨,可列不等式求解.【详解】解:(1)根据题意得:,解得:;(2)设购买污水处理设备A型设备x台,B型设备(10-x)台,根据题意得,12x+9(10-x)≤100,∴x≤,∵x取非负整数,∴x=0,1,2,1∴10-x=10,9,8,7∴有四种购买方案:①A型设备0台,B型设备10台;②A型设备1台,B型设备9台;③A型设备2台,B型设备8台.④A型设备1台,B型设备7台;(1)由题意:220x+180(10-x)≥1880,∴x≥2,又∵x≤,∴x为2,1.当x=2时,购买资金为12×2+9×8=96(万元),当x=1时,购买资金为12×1+9×7=99(万元),∴为了节约资金,应选购A型设备2台,B型设备8台.【点睛】本题考查了一元一次不等式的应用,根据购买一台A型号设备比购买一台B型号设备多1万元,购买2台A型设备比购买1台B型号设备少1万元和根据使治污公司购买污水处理设备的资金不超过100万元,若每月要求处理洋澜湖的污水量不低于1880吨,等量关系和不等量关系分别列出方程组和不等式求解.22、(1)AC=8,BD=;(2).【解析】
(1)首先证明△ABC是等边三角形,解直角三角形OAB即可解决问题;(2)菱形的面积等于对角线乘积的一半;【详解】解:(1)菱形ABCD的周长为1,∴菱形的边长为1÷4=8∵∠ABC:∠BAD=1:2,∠ABC+∠BAD=180°∠ABC=60°,∠BCD=120°△ABC是等边三角形∴AC=AB=8∵菱形ABCD对角线AC、BD相交于点O∴AC⊥BD,∠ABO=∠ABC=30°∴OA=AB=4∴BO=.∴BD=(2)【点睛】本题考查菱形的性质、等边三角形的判定和性质、解直角三角形等知识,解题的关键是证明△ABC是等边三角形,属于中考常考题型.23、(1)红、黄、白;(2)红色;(3)相同;(1)1【解析】
(1)根据袋子中装有3个红球、2个黄球和1个白球,每个球除颜色外都相同,可知摸到的球的颜色可能是红、黄、白;(2)哪种球的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 理赔服务合同协议书范本
- 清远入城证申请合同范本
- 自制挖掘机租赁合同范本
- 派遣员工终止合同协议书
- 鱼缸消毒灯销售合同范本
- 股份合同终止协议书范本
- 珠海住宅装修协议书范本
- 灯具工程分包合同协议书
- 特许经营权协议合同范本
- 签订房屋期权买卖协议书
- 语言学纲要(新)课件
- 高中物理必修一期中测试题及答案解析
- 风冷热泵机组调试方案
- 《园林主要病虫害防治一览表》
- 部编版语文五年级上册作文审题训练题目
- 李中莹心理创伤简快辅导技巧(课堂PPT)
- VS1真空断路器说明书
- JTT230-2021汽车导静电橡胶拖地带_(高清-最新)
- 监理周例会总承包单位工作汇报PPT课件
- 生态融合绿色发展(EOD)示范项目可行性研究报告模板
- 四大经典之温病
评论
0/150
提交评论