高中数学选修41教案高考网模板_第1页
高中数学选修41教案高考网模板_第2页
高中数学选修41教案高考网模板_第3页
高中数学选修41教案高考网模板_第4页
高中数学选修41教案高考网模板_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第第页高中数学选修41教案高考网模板高中数学选修41教案高考网2022模板1

一、教学内容分析

本小节是一般高中课程标准试验教科书数学5(必修)第三章第3小节,主要内容是利用平面区域表达二元一次不等式(组)的解集;借助图解法解决在线性约束条件下的二元线性目标函数的最值与解问题;运用线性规划知识解决一些简约的实际问题(如资源利用,人力调配,生产安排等)。突出表达了优化思想,与数形结合的思想。本小节是利用数学知识解决实际问题的典例,它表达了数学源于生活而用于生活的特性。

二、同学学习状况分析

本小节内容建立在同学学习了一元不等式(组)及其应用、直线与方程的基础之上,同学对于将实际问题转化为数学问题,数形结合思想有所了解.但从数学知识上看同学对于涉及多个已知数据、多个字母变量,多个不等关系的知识接触尚少,从数学方法上看,同学对于图解法还缺少认识,对数形结合的思想方法的掌控还需时日,而这些都将成为同学学习中的难点。

三、设计思想

以问题为载体,以同学为主体,以探究归纳为主要手段,以问题解决为目的,以多媒体为重要工具,激发同学的动手、观测、思索、猜想探究的爱好。着重引导同学充分体验“从实际问题到数学问题”的数学建模过程,体会“从详细到一般”的抽象思维过程,从“非常到一般”的探究新知的过程;提高同学应用“数形结合”的思想方法解题的技能;培育同学的分析问题、解决问题的技能。

四、教学目标

1、知识与技能:了解二元一次不等式(组)的概念,掌控用平面区域刻画二元一次

不等式(组)的方法;了解线性规划的意义,了解线性约束条件、线性目标函数、

可行解、可行域和解等概念;理解线性规划问题的图解法;会利用图解法

求线性目标函数的最值与相应解;

2、过程与方法:从实际问题中抽象出简约的线性规划问题,提高同学的数学建模技能;

在探究的过程中让同学体验到数学活动中充斥着探究与制造,培育同学的数据分析技能、

化归技能、探究技能、合情推理技能;

3、情态与价值:在应用图解法解题的过程中,培育同学的化归技能与运用数形结合思想的技能;体会线性规划的基本思想,培育同学的数学应用意识;体验数学来源于生活而服务于生活的特性.

五、教学重点和难点

重点:从实际问题中抽象出二元一次不等式(组),用平面区域刻画二元一次不等式组

的解集及用图解法解简约的二元线性规划问题;

难点:二元一次不等式所表示的平面区域的探究,从实际情境中抽象出数学问题的过

程探究,简约的二元线性规划问题的图解法的探究.

六、教学基本流程

第一课时,利用生动的情景激起同学求知的欲望,从中抽象出数学问题,引出二元一次不等式(组)的基本概念,并为线性规划问题的引出埋下伏笔.通过同学的自主探究,分类争论,大胆猜想,细心求证,得出二元一次不等式所表示的平面区域,从而突破本小节的第一个难点;通过例1、例2的争论与求解引导同学归纳出画二元一次不等式(组)所表示的平面区域的详细解答步骤(直线定界,非常点定域);最末通过练习加以巩固。

第二课时,重现引例,在同学的回顾、探讨中解决引例中的可用方案问题,并由此归纳总结出从实际问题中抽象出数学问题的基本过程:理清数据关系(列表)→设立决策变量→建立数学关系式→画出平面区域.让同学对例3、例4进行分析与争论进一步完善这一过程,突破本小节的第二个难点。

第三课时,设计情景,借助前两个课时所学,设立决策变量,画出平面区域并引出新的问题,从中引出线性规划的相关概念,并让同学思索探究,利用非常值进行猜想,找到方案;再引导同学对目标函数进行变形转化,利用直线的图象对上述问题进行几何探究,把最值问题转化为截距问题,通过几何方法对引例做出完满的解答;回顾整个探究过程,让同学在争论中达成共识,总结出简约线性规划问题的图解法的基本步骤.通过例5的展示让同学从动态的角度感受图解法.最末再现情景1,并对之作出完满的解答。

第四课时,给出新的引例,让同学体会到线性规划问题的普遍性.让同学争论分析,对引例给出解答,并综合前三个课时的教学内容,连缀成线,总结出简约线性规划的应用性问题的一般解答步骤,通过例6,例7的分析与展示进一步完善这一过程.总结线性规划的应用性问题的几种类型,让同学更深入的体会到优化理论,更好的认识到数学来源于生活而运用于生活的特点。

高中数学选修41教案高考网2022模板2

教学预备

教学目标

数列求和的综合应用

教学重难点

数列求和的综合应用

教学过程

典例分析

3.数列{an}的前n项和Sn=n2-7n-8,

(1)求{an}的通项公式

(2)求{|an|}的前n项和Tn

4.等差数列{an}的公差为,S100=145,那么a1+a3+a5+…+a99=

5.已知方程(*2-2*+m)(*2-2*+n)=0的四个根组成一个首项为的等差数列,那么|m-n|=

6.数列{an}是等差数列,且a1=2,a1+a2+a3=12

(1)求{an}的通项公式

(2)令bn=an*n,求数列{bn}前n项和公式

7.四数中前三个数成等比数列,后三个数成等差数列,首末两项之和为21,中间两项之和为18,求此四个数

8.在等差数列{an}中,a1=20,前n项和为Sn,且S10=S15,求当n为何值时,Sn有值,并求出它的值

.已知数列{an},an∈N-,Sn=(an+2)2

(1)求证{an}是等差数列

(2)假设bn=an-30,求数列{bn}前n项的最小值

0.已知f(*)=*2-2(n+1)*+n2+5n-7(n∈N-)

(1)设f(*)的图象的顶点的横坐标构成数列{an},求证数列{an}是等差数列

(2设f(*)的图象的顶点到*轴的距离构成数列{dn},求数列{dn}的前n项和sn.

11.购买一件售价为5000元的商品,采纳分期付款的方法,每期付款数相同,购买后1个月第1次付款,再过1个月第2次付款,如此下去,共付款5次后还清,假如按月利率0.8%,每月利息按复利计算(上月利息要计入下月本金),那么每期应付款多少?(精确到1元)

12.某商品在最近100天内的价格f(t)与时间t的

函数关系式是f(t)=

销售量g(t)与时间t的函数关系是

g(t)=-t/3+109/3(0≤t≤100)

求这种商品的日销售额的值

注:对于分段函数型的应用题,应留意对变量*的取值区间的争论;求函数的值,应分别求出函数在各段中的值,通过比较,确定值

高中数学选修41教案高考网2022模板3

【简约复合函数的导数】

【高考要求】:简约复合函数的导数(B).

【学习目标】:1.了解复合函数的概念,理解复合函数的求导法那么,能求简约的复合函数(仅限于形如f(a*+b))的导数.

2.会用复合函数的导数讨论函数图像或曲线的特征.

3.会用复合函数的导数讨论函数的单调性、极值、最值.

【知识复习与自学质疑】

1.复合函数的求导法那么是什么?

2.(1)假设,那么________.(2)假设,那么_____.(3)假设,那么___________.(4)假设,那么___________.

3.函数在区间_____________________________上是增函数,在区间__________________________上是减函数.

4.函数的单调性是_________________________________________.

5.函数的极大值是___________.

6.函数的值,最小值分别是______,_________.

【例题精讲】

1.求以下函数的导数(1);(2).

2.已知曲线在点处的切线与曲线在点处的切线相同,求的值.

【矫正反馈】

1.与曲线在点处的切线垂直的一条直线是___________________.

2.函数的极大值点是_______,微小值点是__________.

(不好解)3.设曲线在点处的切线斜率为,假设,那么函数的周期是____________.

4.已知曲线在点处的切线与曲线在点处的切线相互垂直,为原点,且,那么的面积为______________.

5.曲线上的点到直线的最短距离是___________.

【迁移应用】

1.设,,假设存在,使得,求的取值范围.

2.已知,,假设对任意都有,试求的取值范围.

【概率统计复习】

一、知识梳理

1.三种抽样方法的联系与区分:

类别共同点不同点相互联系适用范围

简约随机抽样都是等概率抽样从总体中逐个抽取总体中个体比较少

系统抽样将总体匀称分成假设干部分;按事先确定的规章在各部分抽取在起始部分采纳简约随机抽样总体中个体比较多

分层抽样将总体分成假设干层,按个体个数的比例抽取在各层抽样时采纳简约随机抽样或系统抽样总体中个体有明显差异

(1)从含有N个个体的总体中抽取n个个体的样本,每个个体被抽到的概率为

(2)系统抽样的步骤:①将总体中的个体随机编号;②将编号分段;③在第1段中用简约随机抽样确定起始的个体编号;④根据事先讨论的规章抽取样本.

(3)分层抽样的步骤:①分层;②按比例确定每层抽取个体的个数;③各层抽样;④汇合成样本.

(4)要懂得从图表中提取有用信息

如:在频率分布直方图中①小矩形的面积=组距=频率②众数是矩形的中点的横坐标③中位数的左边与右边的直方图的面积相等,可以由此估量中位数的值

2.方差和标准差都是刻画数据波动大小的数字特征,一般地,设一组样本数据,,…,,其平均数为那么方差,标准差

3.古典概型的概率公式:假如一次试验中可能涌现的结果有个,而且全部结果都是等可能的,假如事项包含个结果,那么事项的概率P=

特别提示:古典概型的两个共同特点:

○1,即试中有可能涌现的基本领件只有有限个,即样本空间Ω中的元素个数是有限的;

○2,即每个基本领件涌现的可能性相等。

4.几何概型的概率公式:P(A)=

特别提示:几何概型的特点:试验的结果是无限不可数的;○2每个结果涌现的可能性相等。

二、夯实基础

(1)某单位有职工160名,其中业务人员120名,管理人员16名,后勤人员24名.为了解职工的某种状况,要从中抽取一个容量为20的样本.假设用分层抽样的方法,抽取的业务人员、管理人员、后勤人员的人数应分别为____________.

(2)某赛季,甲、乙两名篮球运动员都参与了

11场竞赛,他们全部竞赛得分的状况用如图2所示的茎叶图表示,

那么甲、乙两名运动员得分的中位数分别为()

A.19、13B.13、19C.20、18D.18、20

(3)统计某校1000名同学的数学会考成果,

得到样本频率分布直方图如右图示,规定不低于60分为

及格,不低于80分为优秀,那么及格人数是;

优秀率为。

(4)在一次歌手大奖赛上,七位评委为歌手打出的分数如下:

9.48.49.49.99.69.49.7

去掉一个分和一个最低分后,所剩数据的平均值

和方差分别为()

A.9.4,0.484B.9.4,0.016C.9.5,0.04D.9.5,0.016

(5)将一颗骰子先后抛掷2次,观测向上的点数,那么以第一次向上点数为横坐标*,第二次向上的点数为纵坐标y的点(*,y)在圆*2+y2=27的内部的概率________.

(6)在长为12cm的线段AB上任取一点M,并且以线段AM为边的正方形,那么这正方形的面积介于36cm2与81cm2之间的概率为()

三、高考链接

07、某班50名同学在一次百米测试中,成果全部介于13秒与19秒之间,将测试结果按如下方式分成六组:第一组,成果大于等于13秒且小于14秒;第二组,成果大于等于14秒且小于15秒

;第六组,成果大于等于18秒且小于等于19秒.右图

是按上述分组方法得到的频率分布直方图.设成果小于17秒

的同学人数占全班总人数的百分比为,成果大于等于15秒

且小于17秒的同学人数为,那么从频率分布直方图中可分析

出和分别为()

08、从某项综合技能测试中抽取100人的成果,统计如表,那么这100人成果的标准差为()

分数54321

人数2022303010

09、在区间上随机取一个数*,的值介于0到之间的概率为().

08、现有8名奥运会志愿者,其中志愿者通晓日语,通晓俄语,通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.

(Ⅰ)求被选中的概率;(Ⅱ)求和不全被选中的概率.

【核心考点算法初步复习】

1.(2022年天津)阅读图11的程序框图,运行相应的程序,那么输出i的值为()

A.3B.4C.5D.6

2.(2022年全国)执行图12的程序框图,假如输入的N是6,那么输出的p是()

A.120B.720C.1440D.5040

3.执行如图13的程序框图,那么输出的n=()

A.6B.5C.8D.7

4.(2022年湖南)假设执行如图14所示的框图,输入*1=1,*2=2,*3=3,*-=2,那么输出的数等于________.

5.(2022年浙江)假设某程序图如图15所示,那么该程序运行后输出的k值为________.

6.(2022年淮南模拟)某程序框图如图16所示,现输入如下四个函数,那么可以输出的函数是()

A.f(*)=*2B.f(*)=1*

C.f(*)=e*D.f(*)=sin*

7.运行如下程序:当输入168,72时,输出的结果是()

INPUTm,n

DO

r=mMODn

m=n

n=r

LOOPUNTILr=0

PRINTm

END

A.168B.72C.36D.24

8.在图17程序框图中,输入f1(*)=*e*,那么输出的函数表达式是________________.

9.(2022年安徽合肥模拟)如图18所示,输出的为()

A.10B.11C.12D.13

10.(2022年广东珠海模拟)阅读图19的算法框图,输出结果的值为()

A.1B.3C.12D.32

高中数学选修41教案高考网2021模板4

教学预备

教学目标

1、应用正弦余弦定理解斜三角形应用题的一般步骤及基本思路

(1)分析,(2)建模,(3)求解,(4)检验;

2、实际问题中的有关术语、名称:

(1)仰角与俯角:均是指视线与水平线所成的角;

(2)方位角:是指从正北方向顺时针转到目标方向线的夹角;

(3)方向角:常见的如:正东方向、东南方向、北偏东、南偏西等;

3、用正弦余弦定理解实际问题的常见题型有:-

测量距离、测量高度、测量角度、计算面积、航海问题、物理问题等;

教学重难点

1、应用正弦余弦定理解斜三角形应用题的一般步骤及基本思路

(1)分析,(2)建模,(3)求解,(4)检验;

2、实际问题中的有关术语、名称:

(1)仰角与俯角:均是指视线与水平线所成的角;

(2)方位角:是指从正北方向顺时针转到目标方向线的夹角;

(3)方向角:常见的如:正东方向、东南方向、北偏东、南偏西等;

3、用正弦余弦定理解实际问题的常见题型有:

测量距离、测量高度、测量角度、计算面积、航海问题、物理问题等;

教学过程

一、知识归纳

1、应用正弦余弦定理解斜三角形应用题的一般步骤及基本思路

(1)分析,(2)建模,(3)求解,(4)检验;

2、实际问题中的有关术语、名称:

(1)仰角与俯角:均是指视线与水平线所成的角;

(2)方位角:是指从正北方向顺时针转到目标方向线的夹角;

(3)方向角:常见的如:正东方向、东南方向、北偏东、南偏西等;

3、用正弦余弦定理解实际问题的常见题型有:

测量距离、测量高度、测量角度、计算面积、航海问题、物理问题等;

二、例题争论

一)利用方向角构造三角形

数学教案

四)测量角度问题

例4、在一个特定时段内,以点E为中心的7海里以内海疆被设为警戒水域.点E正北55海里处有一个雷达观测站A.某时刻测得一艘匀速直线行驶的船只位于点A北偏东。

高中数学选修41教案高考网2022模板5

教学预备

教学目标

知识目标等差数列定义等差数列通项公式

技能目标掌控等差数列定义等差数列通项公式

情感目标培育同学的观测、推理、归纳技能

教学重难点

教学重点等差数列的概念的理解与掌控

等差数列通项公式推导及应用教学难点等差数列“等差”的理解、把握和应用

教学过程

由-《红高粱》主题曲“酒神曲”引入等差数列定义

问题:多媒体演示,观测发觉?

一、等差数列定义:

一般地,假如一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。这个常数叫做等差数列的公差,通常用字母d表示。

例1:观测下面数列是否是等差数列:….

二、等差数列通项公式:

已知等差数列{an}的首项是a1,公差是d。

那么由定义可得:

a2-a1=d

a3-a2=d

a4-a3=d

……

an-an-1=d

即可得:

an=a1+(n-1)d

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论