2024年河北省武邑中学八年级数学第二学期期末教学质量检测模拟试题含解析_第1页
2024年河北省武邑中学八年级数学第二学期期末教学质量检测模拟试题含解析_第2页
2024年河北省武邑中学八年级数学第二学期期末教学质量检测模拟试题含解析_第3页
2024年河北省武邑中学八年级数学第二学期期末教学质量检测模拟试题含解析_第4页
2024年河北省武邑中学八年级数学第二学期期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年河北省武邑中学八年级数学第二学期期末教学质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.一个多边形的每一个外角都等于40°,则这个多边形的内角和是.()A.360° B.980° C.1260° D.1620°2.今年我市有近2万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是()A.这1000名考生是总体的一个样本 B.近2万名考生是总体C.每位考生的数学成绩是个体 D.1000名学生是样本容量3.如图,▱ABCD的对角线AC、BD相交于点O,△AOB是等边三角形,OE⊥BD交BC于点E,CD=1,则CE的长为()A. B. C. D.4.如图,函数和的图象相交于点,则不等式的解集为()A. B. C. D.5.如图,在中,的垂直平行线交于点,则的度数为().A. B. C. D.6.如果△ABC的三个顶点A,B,C所对的边分别为a,b,c,那么下列条件中,不能判断△ABC是直角三角形的是()A.∠A=25°,∠B=65° B.∠A:∠B:∠C=2:3:5C.a:b:c=:: D.a=6,b=10,c=127.下列说法错误的是A.必然事件发生的概率为 B.不可能事件发生的概率为C.有机事件发生的概率大于等于、小于等于 D.概率很小的事件不可能发生8.若关于的一元二次方程有两个不相等的实数根,则一次函数的图象可能是:A. B. C. D.9.若,则下列不等式不成立的是()A. B. C. D.10.关于x的一元二次方程的两实数根分别为、,且,则m的值为()A. B. C. D.011.点A(1,-2)在正比例函数的图象上,则k的值是().A.1 B.-2 C. D.12.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F,若BF=12,AB=10,则AE的长为()A.13 B.14 C.15 D.16二、填空题(每题4分,共24分)13.如图,小明同学在东西方向的环海路A处,测得海中灯塔P在北偏东60°方向上,在A处向正东方向行了100米到达B处,测得海中灯塔P在北偏东30°方向上,则灯塔P到环海路的距离PC=_____米.14.根据数量关系:的5倍加上1是正数,可列出不等式:__________.15.如图,已知在△ABC中,BC边上的高AD与AC边上的高BE交于点F,且∠BAC=45°,BD=6,CD=4,则△ABC的面积为_____.16.如图,点A,B在函数的图象上,点A、B的横坐标分别为、3,则△AOB的面积是_____.17.如图,一次函数y=kx+b的图象与x轴相交于点(﹣2,0),与y轴相交于点(0,3),则关于x的方程kx=b的解是_____.18.如图,Rt△ABC中,∠C=90°,AC=3,BC=1.分别以AB、AC、BC为边在AB的同侧作正方形ABEF、ACPQ、BCMN,四块阴影部分的面积分别为S1、S2、S3、S1.则S1﹣S2+S3+S1等于_____.三、解答题(共78分)19.(8分)计算(1)计算:(2)分解因式:20.(8分)在菱形中,点是边的中点,试分别在下列两个图形中按要求使用无刻度的直尺画图.(1)在图1中,过点画的平行线;(2)在图2中,连接,在上找一点,使点到点,的距离之和最短.21.(8分)如图,在矩形ABCD中,,,E是AB上一点,连接CE,现将向上方翻折,折痕为CE,使点B落在点P处.(1)当点P落在CD上时,_____;当点P在矩形内部时,BE的取值范围是_____.(2)当点E与点A重合时:①画出翻折后的图形(尺规作图,保留作图痕迹);②连接PD,求证:;(3)如图,当点Р在矩形ABCD的对角线上时,求BE的长.22.(10分)如图,在直角坐标平面内,直线y=﹣x﹣4与x轴、y轴分别交于点A、B,点C在x轴正半轴上,且满足OC=OB.(1)求线段AB的长及点C的坐标;(2)设线段BC的中点为E,如果梯形AECD的顶点D在y轴上,CE是底边,求点D的坐标和梯形AECD的面积.23.(10分)如图,在平面直角坐标系中,直线过点且与轴交于点,把点向左平移2个单位,再向上平移4个单位,得到点.过点且与平行的直线交轴于点.(1)求直线CD的解析式;(2)直线AB与CD交于点E,将直线CD沿EB方向平移,平移到经过点B的位置结束,求直线CD在平移过程中与x轴交点的横坐标的取值范围.24.(10分)四张扑克牌的牌面如图①所示,将扑克牌洗均匀后,如图②背面朝上放置在桌面上。(1)若随机抽取一张扑克牌,则牌面数字恰好为5的概率是_____________;(2)规定游戏规则如下:若同时随机抽取两张扑克牌,抽到两张牌的牌面数字之和是偶数为胜;反之,则为负。你认为这个游戏是否公平?请说明理由。25.(12分)已知,求的值.26.解不等式组,并把它的解集在数轴上表示出来.

参考答案一、选择题(每题4分,共48分)1、C【解析】

先利用360°÷40°求出多边形的边数,再根据多边形的内角和公式(n-2)•180°计算即可求解.【详解】解:360°÷40°=9,∴(9-2)•180°=1260°.故选:C.【点睛】本题主要考查了正多边形的外角与边数的关系,求出多边形的边数是解题的关键.2、C【解析】试题分析:1000名考生的数学成绩是总体的一个样本;近8万多名考生的数学成绩是总体;每位考生的数学成绩是个体;1000是样本容量.考点:(1)、总体;(2)、样本;(3)、个体;(4)、样本容量.3、D【解析】

首先证明四边形ABCD是矩形,在RT△BOE中,易知BE=2EO,只要证明EO=EC即可.【详解】∵四边形ABCD是平行四边形,∴AO=OC,BO=OD,∵△ABO是等边三角形,∴AO=BO=AB,∴AO=OC=BO=OD,∴AC=BD,∴四边形ABCD是矩形.∴OB=OC,∠ABC=90°,∵△ABO是等边三角形,∴∠ABO=60°,∴∠OBC=∠OCB=30°,∠BOC=120°,∵BO⊥OE,∴∠BOE=90°,∠EOC=30°,∴∠EOC=∠ECO,∴EO=EC,∴BE=2EO=2CE,∵CD=1,∴BC=CD=,∴EC=BC=,故选:D.【点睛】本题考查平行四边形的性质、矩形的判定、等边三角形的性质、等腰三角形的判定等知识,解题的关键是直角三角形30度角的性质的应用,属于中考常考题型.4、B【解析】

首先利用待定系数法求出A点坐标,再以交点为分界,结合图象写出不等式2x≥ax+4的解集即可.【详解】∵函数y=2x的图象过点A(m,3),∴将点A(m,3)代入y=2x得,2m=3,解得,m=,∴点A的坐标为(,3),∴由图可知,不等式2x⩾ax+4的解集为.故选:B.【点睛】本题考查一次函数,熟练掌握计算法则是解题关键.5、A【解析】

根据等腰三角形的性质求出∠ABC=∠C=65°,根据线段的垂直平分线的性质得到AD=BD,得到答案.【详解】解:∵AB=AC,∠A=50°,∴∠ABC=∠C=65°,∵l垂直平分AB,∴AD=BD,∴∠ABD=∠A=50°,∴∠CBD=∠ABC-∠ABD=65°-50°=15°.故选:A【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.6、D【解析】

根据勾股定理的逆定理和三角形的内角和定理进行判定即可.【详解】解:A、∵∠A=25°,∠B=65°,∴∠C=180°﹣∠A﹣∠B=90°,∴△ABC是直角三角形,故A选项正确;B、∵∠A:∠B:∠C=2:3:5,∴,∴△ABC是直角三角形;故B选项正确;C、∵a:b:c=::,∴设a=k,b=k,c=k,∴a2+b2=5k2=c2,∴△ABC是直角三角形;故C选项正确;D、∵62+102≠122,∴△ABC不是直角三角形,故D选项错误.故选:D.【点睛】本题主要考查直角三角形的判定方法,熟练掌握勾股定理的逆定理、三角形的内角和定理是解题的关键.7、D【解析】

利用概率的意义分别回答即可得到答案.概率的意义:必然事件就是一定发生的事件,概率是1;不可能发生的事件就是一定不发生的事件,概率是0;随机事件是可能发生也可能不发生的事件,概率>0且<1;不确定事件就是随机事件.【详解】解:A、必然发生的事件发生的概率为1,正确;

B、不可能发生的事件发生的概率为0,正确;

C、随机事件发生的概率大于0且小于1,正确;

D、概率很小的事件也有可能发生,故错误,

故选D.【点睛】本题考查了概率的意义及随机事件的知识,解题的关键是了解概率的意义.8、B【解析】

由方程有两个不相等的实数根,可得,解得,即异号,当时,一次函数的图象过一三四象限,当时,一次函数的图象过一二四象限,故答案选B.9、C【解析】

直接根据不等式的性质进行分析判断即可得到答案.【详解】A.,则a是负数,可以看成是5<6两边同时加上a,故A选项成立,不符合题意;B.是不等式5<6两边同时减去a,不等号不变,故B选项成立,不符合题意;C.5<6两边同时乘以负数a,不等号的方向应改变,应为:,故选项C不成立,符合题意;D.是不等式5<6两边同时除以a,不等号改变,故D选项成立,不符合题意.故选C.【点睛】本题考查的实际上就是不等式的基本性质:不等式的两边都加上(或减去)同一个数(或式子)不等号的方向不变;不等式两边同乘以(或除以)同一个正数,不等号的方向不变;不等式两边同乘以(或除以)同一个负数,不等号的方向改变.10、A【解析】

根据一元二次方程根与系数的关系得到x1+x2=4,代入代数式计算即可.【详解】解:∵x1+x2=4,

∴x1+3x2=x1+x2+2x2=4+2x2=5,

∴x2=,

把x2=代入x2-4x+m=0得:()2-4×+m=0,

解得:m=,

故选:A.【点睛】本题考查的是一元二次方程根与系数的关系,掌握一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系为:x1+x2=-,x1•x2=是解题的关键.11、B【解析】

直接把点(1,-2)代入正比例函数y=kx(k≠0),求出k的值即可.【详解】∵正比例函数y=kx(k≠0)的图象经过点(1,-2),∴-2=k.故选B.【点睛】本题考查了一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.12、D【解析】

先证明四边形ABEF是平行四边形,再证明邻边相等即可得出四边形ABEF是菱形,得出AE⊥BF,OA=OE,OB=OF=BF=6,由勾股定理求出OA,即可得出AE的长.【详解】如图所示:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵∠BAD的平分线交BC于点E,∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴AB=BE,同理可得AB=AF,∴AF=BE,∴四边形ABEF是平行四边形,∵AB=AF,∴四边形ABEF是菱形,∴AE⊥BF,OA=OE,OB=OF=BF=6,∴OA==8,∴AE=2OA=16.故选D.【点睛】本题考查平行四边形的性质与判定、等腰三角形的判定、菱形的判定和性质、勾股定理等知识;熟练掌握平行四边形的性质,证明四边形ABEF是菱形是解决问题的关键.二、填空题(每题4分,共24分)13、50【解析】

在图中两个直角三角形中,先根据已知角的正切函数,分别求出AC和BC,根据它们之间的关系,构建方程解答.【详解】由已知得,在Rt△PBC中,∠PBC=60°,PC=BCtan60°=BC,在Rt△APC中,∠PAC=30°,AC=PC=3BC=100+BC,解得,BC=50,∴PC=50(米),答:灯塔P到环海路的距离PC等于50米.故答案为:50【点睛】此题考查的知识点是解直角三角形的应用,关键明确解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.14、【解析】

问题中的“正数”是关键词语,将它转化为数学符号即可.【详解】题中“x的5倍加上1”表示为:“正数”就是的5倍加上1是正数,可列出不等式:故答案为:.【点睛】用不等式表示不等关系是研究不等式的基础,在表示时,一定要抓住关键词语,弄清不等关系,把文字语言和不等关系转化为用数学符号表示的不等式.15、1【解析】分析:首先证明△AEF≌△BEC,推出AF=BC=10,设DF=x.由△ADC∽△BDF,推出,构建方程求出x即可解决问题;详解:∵AD⊥BC,BE⊥AC,∴∠AEF=∠BEC=∠BDF=90°,∵∠BAC=45°,∴AE=EB,∵∠EAF+∠C=90°,∠CBE+∠C=90°,∴∠EAF=∠CBE,∴△AEF≌△BEC,∴AF=BC=10,设DF=x.∵△ADC∽△BDF,∴,∴,整理得x2+10x﹣24=0,解得x=2或﹣12(舍弃),∴AD=AF+DF=12,∴S△ABC=•BC•AD=×10×12=1.故答案为1.点睛:本题考查勾股定理、等腰三角形的判定和性质等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,学会利用参数构建方程解决问题,属于中考常考题型.16、1【解析】

过A作AC⊥x轴于C,过B作BD⊥x轴于D,由点A,B在函数的图象上,得到S△AOC=S△BOD=,求得A(m,),B(3m,),于是得到结论.【详解】解:过A作AC⊥x轴于C,过B作BD⊥x轴于D,∵点A,B在函数的图象上,∴S△AOC=S△BOD=,∵点A、B的横坐标分别为m、3m,∴A(m,),B(3m,),∴S△AOB=S四边形ACDB=(+)×(3m-m)=1,故答案为1.【点睛】本题考查了反比例函数系数k的几何意义,证得S△AOB=S四边形ACDB是解题的关键.17、x=1【解析】

依据待定系数法即可得到k和b的值,进而得出关于x的方程kx=b的解.【详解】解:∵一次函数y=kx+b的图象与x轴相交于点(﹣1,0),与y轴相交于点(0,3),∴,解得,∴关于x的方程kx=b即为:x=3,解得x=1,故答案为:x=1.【点睛】本题主要考查了待定系数法的应用,任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.18、2【解析】

过F作AM的垂线交AM于D,通过证明S2=SRt△ABC;S3=SRt△AQF=SRt△ABC;S1=SRt△ABC,进而即可求解.【详解】解:过F作AM的垂线交AM于D,可证明Rt△ADF≌Rt△ABC,Rt△DFK≌Rt△CAT,所以S2=SRt△ABC.由Rt△DFK≌Rt△CAT可进一步证得:Rt△FPT≌Rt△EMK,∴S3=S△FPT,又可证得Rt△AQF≌Rt△ACB,∴S1+S3=SRt△AQF=SRt△ABC.易证Rt△ABC≌Rt△EBN,∴S1=SRt△ABC,∴S1﹣S2+S3+S1=(S1+S3)﹣S2+S1=SRt△ABC﹣SRt△ABC+SRt△ABC=2﹣2+2=2,故答案是:2.【点睛】本题考查正方形的性质及三角形全等的判定与性质,根据已知条件证得S2=SRt△ABC,S3=SRt△AQF=SRt△ABC,S1=SRt△ABC是解决问题的关键.三、解答题(共78分)19、(1);(2).【解析】

(1)原式第一项利用多项式乘以多项式法则计算,第二项利用多项式除以单项式法则计算即可得到结果;

(2)原式提取公因式,再利用完全平方公式分解即可.【详解】(1)原式=2a2−2ab+ab−b2−2a2+ab=−b2;(2)原式=-xy(x2-4xy+4y2)=−xy(x−2y)2.【点睛】本题考查的知识点是整式的混合运算,提公因式法与公式法的综合运用,解题的关键是熟练的掌握整式的混合运算,提公因式法与公式法的综合运用.20、(1)详见解析;(2)详见解析.【解析】

(1)连接,交于点,连接并延长交于点F,证出EO为△ABC的中位线即可得出结论;(2)连接,连接交于点,连接,根据菱形的对称性可得:CP=AP,此时AP+PE=CP+PE=CE,根据两点之间线段最短,此时AP+PE最小.【详解】解:(1)连接,交于点,连接并延长交于点F,∵四边形ABCD为菱形∴点O为AC的中点∵点E为AB的中点∴EO为△ABC的中位线∴EO∥BC如下图所示:即为所求.(2)连接,连接交于点,连接,根据菱形的对称性可得:CP=AP,∴此时AP+PE=CP+PE=CE,根据两点之间线段最短,此时AP+PE最小,且最小值即为CE的长如图所示:点即为所求.【点睛】此题考查的是作图题,掌握菱形的性质、中位线的性质和两点之间线段最短是解决此题的关键.21、(1)12,0<BE<12;(2)①见解析,②见解析;(3)2或1.【解析】

(1)由折叠的性质得到推出△BCE是等腰直角三角形,即可得到结论;

(2)①由题意画出图形即可;

②根据全等三角形的性质得到∠PAC=∠DCA,设AP与CD相交于O,于是得到OA=OC,求得∠OAC=∠OPD,根据平行线的判定定理得到结论;

(3)分两种情形,当点P在对角线AC或对角线BD上时,两种情形分别求解即可.【详解】解:(1)当点P在CD上时,如图1,

∵将∠B向右上方翻折,折痕为CE,使点B落在点P处,

∴∠BCE=∠ECP=45°,

∴△BCE是等腰直角三角形,

∴BE=BC=AD=12,

当点P在矩形内部时,BE的取值范围是0<BE<12;

故答案为:12,0<BE<12;

(2)①补全图形如图2所示,

②当点E与点A重合时,如图3,连接PD,设CD交PA于点O.

由折叠得,AB=AP=CD,

在△ADC与△CPA中,,

∴△ADC≌△CPA,

∴∠PAC=∠DCA,

设AP与CD相交于O,则OA=OC,

∴OD=OP,∠ODP=∠OPD,

∵∠AOC=∠DOP,

∴∠OAC=∠OPD

∴PD∥AC;

(3)如图4中,当点P落在对角线AC上时,

由折叠得,BC=PC=12,AC==20,

∴PA=8,设BE=PE=x,

在Rt△APE中,(12-x)2=x2+82,

解得x=2.

∴BE=2.

如图5中,当点P落在对角线BD上时,设BD交CE于点M.

由折叠得,BE=PE,∠BEC=∠PEC,∵EM=EM,∴△MBE∽△MEP,∴∠EMB=∠EMP,∵∠EMB+∠EMP=180°,∴EC⊥BD,∴∠BCE=∠ABD,∵∠A=∠ABC=10°,∴△CBE∽△BAD,

∴,

∴,

∴BE=1,

综上所述,满足条件的BE的值为2或1.【点睛】本题属于四边形综合题,主要考查了矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理折叠的性质,等腰直角三角形的性质等知识,解题的关键是学会用分类讨论的思想解决问题.22、(1)A(﹣3,0),B(0,﹣4),C(2,0);(2)S梯形AECD=1.【解析】

(1)令x=0求出点B的坐标,令y=0求出点A的坐标,根据勾股定理求出AB的长,然后根据OC=OB即可求出点C的坐标;(2)首先证明梯形AECD是直角梯形,由△AOD∽△COB,求出OD的长,再由勾股定理求出BC、AD、AE的长即可解决问题;【详解】(1)令x=0,得到y=﹣4,∴B(0,﹣4),令y=0,得到x=﹣3,∴A(﹣3,0),∴AB==5,∵OC=OB,点C中x轴的正半轴上,∴C(2,0)(2)∵AC=AB=5,EC=BE,∴AE⊥BC,∵CE是梯形AECD的底,∴AD∥CE,∴△AOD∽△COB,∴,∴,∴OD=6,∴D(6,0),∵BC=2,AD=3,AE=,∴S梯形AECD×AE=1.【点睛】本题考查一次函数与坐标轴的交点、相似三角形的判定与性质、勾股定理、梯形的性质等知识,解题的关键是熟练掌握基本知识,灵活运用所学知识解决问题,属于中考常考题型.23、(1)y=3x-10;(2)【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论