安徽省宿州市埇桥区闵贤中学2024届八年级下册数学期末预测试题含解析_第1页
安徽省宿州市埇桥区闵贤中学2024届八年级下册数学期末预测试题含解析_第2页
安徽省宿州市埇桥区闵贤中学2024届八年级下册数学期末预测试题含解析_第3页
安徽省宿州市埇桥区闵贤中学2024届八年级下册数学期末预测试题含解析_第4页
安徽省宿州市埇桥区闵贤中学2024届八年级下册数学期末预测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省宿州市埇桥区闵贤中学2024届八年级下册数学期末预测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.下列说法正确的是()A.某日最低气温是–2℃,最高气温是4℃,则该日气温的极差是2℃B.一组数据2,2,3,4,5,5,5,这组数据的众数是2C.小丽的三次考试的成绩是116分,120分,126分,则小丽这三次考试平均数是121分D.一组数据2,2,3,4,这组数据的中位数是2.52.如图,被笑脸盖住的点的坐标可能是()A. B. C. D.3.甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,他们分别以不同的速度匀速行驶,已知甲先出发6分钟后,乙才出发,在整个过程中,甲、乙两人的距离y(千米)与甲出发的时间x(分)之间的关系如图所示,乙从B地到A地需要()分钟A.12 B.14 C.18 D.204.下列图形中,中心对称图形有()A.1个 B.2个 C.3个 D.4个5.已知点,,三点都在反比例函数的图像上,则下列关系正确的是().A. B. C. D.6.如图,在正方形中,是对角线上的一点,点在的延长线上,连接、、,延长交于点,若,,则下列结论:①;②;③;④,其中正确的结论序号是()A.①②③ B.①②④ C.②③④ D.①②③④7.下列多项式,能用平方差公式分解的是A. B.C. D.8.如图,矩形ABCD中,E是AD的中点,将沿直线BE折叠后得到,延长BG交CD于点F若,则FD的长为()A.3 B. C. D.9.在同一平面直角坐标系中,函数y=2x﹣a与y=(a≠0)的图象可能是()A. B.C. D.10.周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是()A.小丽从家到达公园共用时间20分钟 B.公园离小丽家的距离为2000米C.小丽在便利店时间为15分钟 D.便利店离小丽家的距离为1000米二、填空题(每小题3分,共24分)11.如图,函数y1=﹣2x和y2=ax+3的图象相交于点A(﹣1,2),则关于x的不等式﹣2x>ax+3的解集是_____12.如图,在矩形中,不重叠地放上两张面积分别是和的正方形纸片和.矩形没被这两个正方形盖住的面积是________;13.如图,在平行四边形中,点在上,,点是的中点,若点以1厘米/秒的速度从点出发,沿向点运动;点同时以2厘米/秒的速度从点出发,沿向点运动,点运动到停止运动,点也同时停止运动,当点运动时间是_____秒时,以点为顶点的四边形是平行四边形.14.如图,是用形状、大小完全相同的等腰梯形镶嵌的图案,则这个图案中的等腰三角形的底角(指锐角)的度数是_____.15.请写出的一个同类二次根式:________.16.八年级(1)班甲、乙两个小组的10名学生进行飞镖训练,某次训练成绩如下:甲组成绩(环)87889乙组成绩(环)98797由上表可知,甲、乙两组成绩更稳定的是________组.17.已知菱形的两条对角线长分别为1和4,则菱形的面积为______.18.若直角三角形斜边上的中线等于3,则这个直角三角形的斜边长为三、解答题(共66分)19.(10分)化简或计算:(1)(π-2019)0-×+;(2)(x+2y)2-4y(x+y).20.(6分)如图,在▱ABCD中,∠BAD的角平分线交BC于点E,交DC的延长线于点F,连接DE.(1)求证:DA=DF;(2)若∠ADE=∠CDE=30°,DE=2,求▱ABCD的面积.21.(6分)计算:(1)1(2)624÷27+(1﹣2)222.(8分)如图,在平面直角坐标系中,为坐标原点,矩形的顶点、,将矩形的一个角沿直线折叠,使得点落在对角线上的点处,折痕与轴交于点.(1)线段的长度为__________;(2)求直线所对应的函数解析式;(3)若点在线段上,在线段上是否存在点,使四边形是平行四边形?若存在,请求出点的坐标;若不存在,请说明理由.23.(8分)(1)计算:5-+2(2)解不等式组:24.(8分)先化简:,并从中选取合适的整数代入求值.25.(10分)如图,在△ABC中,AB=BC,∠ABC=84°,点D是AC的中点,DE∥BC,求∠EDB的度数.26.(10分)如图1,是的边上的中线.(1)①用尺规完成作图:延长到点,使,连接;②若,求的取值范围;(2)如图2,当时,求证:.

参考答案一、选择题(每小题3分,共30分)1、D【解析】

直接利用中位数的定义,众数的定义和平均数的求法、极差的定义分别分析得出答案【详解】A、某日最低气温是–2℃,最高气温是4℃,则该日气温的极差是6℃,故错误B、一组数据2,2,3,4,5,5,5,这组数据的众数是5,故错误;C、小丽的三次考试的成绩是116分,120分,126分,则小丽这三次考试平均数是120.6分,故此选项错误D、一组数据2,2,3,4,这组数据的中位数是2.5,故此选项正确;故选D【点睛】此题考查中位数的定义,众数的定义和平均数的求法、极差的定义,掌握运算法则是解题关键2、C【解析】

判断出笑脸盖住的点在第三象限,再根据第三象限内点的坐标特征解答.【详解】由图可知,被笑脸盖住的点在第三象限,(5,2),(−5,2),(−5,−2),(5,−2)四个点只有(−5,−2)在第三象限.故选:C.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).3、A【解析】

根据题意,得到路程和甲的速度,然后根据相遇问题,设乙的速度为x,列出方程求解,然后即可求出乙需要的时间.【详解】解:由纵坐标看出甲先行驶了1千米,由横坐标看出甲行驶1千米用了6分钟,∴甲的速度是:1÷6=千米/分钟,由纵坐标看出AB两地的距离是16千米,设乙的速度是x千米/分钟,由题意,得:10x+16×=16,解得:x=,∴乙从B地到A地需要的时间为:(分钟);故选:A.【点睛】本题考查了一次函数的应用,利用同路程与时间的关系得出甲乙的速度是解题关键.4、C【解析】

根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.【详解】解:∵第一、二、三个图形是中心对称图形;第四个图形不是中心对称图形,∴共3个中心对称图形.故选C.5、B【解析】解:∵,∴,,即.故选B.6、A【解析】

①证明△AFM是等边三角形,可判断;②③证明△CBF≌△CDE(ASA),可作判断;④设MN=x,分别表示BF、MD、BC的长,可作判断.【详解】解:①∵AM=EM,∠AEM=30°,∴∠MAE=∠AEM=30°,∴∠AMF=∠MAE+∠AEM=60°,∵四边形ABCD是正方形,∴∠FAD=90°,∴∠FAM=90°-30°=60°,∴△AFM是等边三角形,∴FM=AM=EM,故①正确;②连接CE、CF,∵四边形ABCD是正方形,∴∠ADB=∠CDM,AD=CD,在△ADM和△CDM中,∵,∴△ADM≌△CDM(SAS),∴AM=CM,∴FM=EM=CM,∴∠MFC=∠MCF,∠MEC=∠ECM,∵∠ECF+∠CFE+∠FEC=180°,∴∠ECF=90°,∵∠BCD=90°,∴∠DCE=∠BCF,在△CBF和△CDE中,∵,∴△CBF≌△CDE(ASA),∴BF=DE;故②正确;③∵△CBF≌△CDE,∴CF=CE,∵FM=EM,∴CM⊥EF,故③正确;④过M作MN⊥AD于N,设MN=,则AM=AF=,,DN=MN=,∴AD=AB=,∴DE=BF=AB-AF=,∴,∵BC=AD=,故④错误;所以本题正确的有①②③;故选:A.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,等腰三角形的性质和判定,熟记正方形的性质确定出△AFM是等边三角形是解题的关键.7、C【解析】

能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.【详解】解:A、不能用平方差公式进行分解,故此选项错误;B、不能用平方差公式进行分解,故此选项错误;C、能用平方差公式进行分解,故此选项正确;D、不能用平方差公式进行分解,故此选项错误;故选C.【点睛】此题主要考查了公式法分解因式,关键是掌握能用平方差公式分解的多项式特点.8、C【解析】

根据点E是AD的中点以及翻折的性质可以求出AE=DE=EG,然后利用“HL”证明△EDF和△EGF全等,根据全等三角形对应边相等可证得DF=GF;设FD=x,表示出FC、BF,然后在Rt△BCF中,利用勾股定理列式进行计算即可得解.【详解】∵E是AD的中点,∴AE=DE,∵△ABE沿BE折叠后得到△GBE∴AE=EG,AB=BG,∴ED=EG,∵在矩形ABCD中,∴∠A=∠D=90°,∴∠EGF=90°,∵在Rt△EDF和Rt△EGF中,,∴Rt△EDF≌Rt△EGF(HL),∴DF=FG,设DF=x,则BF=6+x,CF=6-x,在Rt△BCF中,102+(6-x)2=(6+x)2,解得x=.故选C.【点睛】本题考查了矩形的性质,全等三角形的判定与性质,勾股定理的应用,翻折的性质,熟记性质,找出三角形全等的条件ED=EG是解题的关键.9、D【解析】

根据一次函数的图像得a值,根据a值求判断反比例函数图像.【详解】解:A、由一次函数的图象,得k<0,与k=2矛盾,故A不符合题意;B、由一次函数的图象,得k<0,与k=2矛盾,故B不符合题意;C、由一次函数的图象,得a<0,当a<0时反比例函数的图象位于二四象限,故C不符合题意;D、由一次函数的图象,得a>0,当a>0时反比例函数的图象位于一三象限,故D符合题意,故选:D.【点睛】本题考查的是反比例函数和一次函数,熟练掌握二者的图像是解题的关键.10、C【解析】解:A.小丽从家到达公园共用时间20分钟,正确;B.公园离小丽家的距离为2000米,正确;C.小丽在便利店时间为15﹣10=5分钟,错误;D.便利店离小丽家的距离为1000米,正确.故选C.二、填空题(每小题3分,共24分)11、x<﹣1.【解析】

以交点为分界,结合图象写出不等式-2x>ax+3的解集即可.【详解】解:∵函数y1=-2x和y2=ax+3的图象相交于点A(-1,2),∴不等式-2x>ax+3的解集为x<-1.故答案为x<-1.【点睛】此题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.12、【解析】

先根据正方形的面积求出正方形纸片和的边长,求出长方形的面积,然后用长方形的面积减去两个正方形纸片的面积即可.【详解】∵正方形纸片和的面积分别为和,∴BC=cm,AE=cm,.故答案为:.【点睛】本题考查了二次根式混合运算的应用,根据题意求出矩形的面积是解题关键.13、3或【解析】

由四边形ABCD是平行四边形得出:AD∥BC,AD=BC,∠ADB=∠CBD,证得FB=FD,求出AD的长,得出CE的长,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,根据题意列出方程并解方程即可得出结果.【详解】∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠ADB=∠CBD,∵∠FBD=∠CBD,∴∠FBD=∠FDB,∴FB=FD=11cm,∵AF=5cm,∴AD=16cm,∵点E是BC的中点,∴CE=BC=AD=8cm,要使点P、Q、E、F为顶点的四边形是平行四边形,则PF=EQ即可,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,分两种情况:①当点Q在EC上时,根据PF=EQ可得:5-t=8-2t,解得:t=3;②当Q在BE上时,根据PF=QE可得:5-t=2t-8,解得:t=.所以,t的值为:t=3或t=.故答案为:3或.【点睛】本题考查了平行四边形的判定与性质、等腰三角形的判定与性质、一元一次方程的应用等知识,熟练掌握平行四边形的判定与性质是解决问题的关键.14、60°【解析】

本题主要考查了等腰梯形的性质,平面镶嵌(密铺).关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.【详解】解:由图可知,铺成的一个图形为平行四边形,而原图形为等腰梯形,则现铺成的图形的底角为:180°÷3=60°.故答案为60°.15、【解析】试题分析:因为,所以与是同类二次根式的有:,….(答案不唯一).考点:1.同类二次根式;2.开放型.16、甲【解析】

根据方差计算公式,进行计算,然后比较方差,小的稳定,在计算方差之前还需先计算平均数.【详解】=8,=8,[(8-8)2+(7-8)2+(8-8)2+(8-8)2+(9-8)2]=0.4,[(9-8)2+(8-8)2+(7-8)2+(9-8)2+(7-8)2]=0.8∵<∴甲组成绩更稳定.故答案为:甲.【点睛】考查平均数、方差的计算方法,理解方差是反映一组数据的波动大小的统计量,方差越小,数据越稳定.17、1【解析】

利用菱形的面积等于对角线乘积的一半求解.【详解】解:菱形的面积=×1×4=1.

故答案为1.【点睛】本题考查了菱形的性质:熟练掌握菱形的性质(菱形具有平行四边形的一切性质;

菱形的四条边都相等;

菱形的两条对角线互相垂直,并且每一条对角线平分一组对角).

记住菱形面积=ab(a、b是两条对角线的长度).18、1.【解析】

根据直角三角形斜边中线的性质即可得.【详解】已知直角三角形斜边上的中线等于3,根据直角三角形斜边上的中线等于斜边的一半可得这个直角三角形的斜边长为1.故答案为:1.三、解答题(共66分)19、(1)-1;(1)x1【解析】

(1)分别根据0指数幂的意义、二次根式的乘法法则和负整数指数幂的运算法则计算每一项,再合并即可;(1)分别根据完全平方公式和单项式乘以多项式的法则计算每一项,再合并同类项即可.【详解】解:(1)原式=1-+1=1-4+1=-1;(1)原式=x1+4xy+4y1-4xy-4y1=x1.【点睛】本题考查了二次根式的乘法运算、0指数幂的意义、负整数指数幂的运算法则和多项式的乘法法则等知识,属于基本题型,熟练掌握上述基本知识是解题的关键.20、(1)详见解析;(1)43【解析】

(1)根据平行四边形的性质得出AB=CD,AD∥BC,求出∠FAD=∠AFB,根据角平分线定义得出∠FAD=∠FAB,求出∠AFB=∠FAB,即可得出答案;(1)求出△ABF为等边三角形,根据等边三角形的性质得出AF=BF=AB,∠ABE=60°,在Rt△BEF中,∠BFA=60°,BE=23,解直角三角形求出EF=1,BF=4,AB=BF=4,BC=AD=1【详解】(1)证明:∵四边形ABCD为平行四边形,∴AB∥CD.∴∠BAF=∠F.∵AF平分∠BAD,∴∠BAF=∠DAF.∴∠F=∠DAF.∴AD=FD.(1)解:∵∠ADE=∠CDE=30°,AD=FD,∴DE⊥AF.∵tan∠ADE=AEDE=∴AE=1.∴S平行四边形ABCD=1S△ADE=AE•DE=43.【点睛】本题考查了平行四边形的性质及解直角三角形的知识,体现了转化的数学思想,难度不大.21、(1)522+3;(2)22【解析】

(1)先化简再合并同类项;(2)先化简和计算乘方,再算除法,最后合并同类项.【详解】(1)原式=2=52(2)原式=12=4=22【点睛】本题考查的知识点是实数的运算,解题关键是熟记实数的运算法则.22、(1)1;(2);(3)【解析】

(1)根据勾股定理即可解决问题;

(2)设AD=x,则OD=OA=AD=12-x,根据轴对称的性质,DE=x,BE=AB=9,又OB=1,可得OE=OB-BE=1-9=6,在Rt△OED中,根据OE2+DE2=OD2,构建方程即可解决问题;

(3)过点E作EP∥BD交BC于点P,过点P作PQ∥DE交BD于点Q,则四边形DEPQ是平行四边形,再过点E作EF⊥OD于点F,想办法求出最小PE的解析式即可解决问题。【详解】解:(1)在Rt△ABC中,∵OA=12,AB=9,故答案为1.(2)如图,设,则根据轴对称的性质,,又,∴,在中,,即,则,∴,∴设直线所对应的函数表达式为:则,解得∴直线所对应的函数表达式为:.故答案为:(3)过点作交于点,过点作交于点,则四边形是平行四边形,再过点作于点,由得,即点的纵坐标为,又点在直线:上,∴,解得,由于,所以可设直线,∵在直线上∴,解得

∴直线为,令,则,解得,∴【点睛】本题考查一次函数综合题、矩形的性质、平行四边形的判定和性质、勾股定理等知识,解题的关键是熟练掌握待定系数法,学会构建一次函数解决问题,属于中考压轴题.23、(1)5;(2)-1≤x<1.【解析】

(1)根据二次根式的性质化简,合并同类二次根

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论