2024年江苏省灌云县数学八年级下册期末质量跟踪监视试题含解析_第1页
2024年江苏省灌云县数学八年级下册期末质量跟踪监视试题含解析_第2页
2024年江苏省灌云县数学八年级下册期末质量跟踪监视试题含解析_第3页
2024年江苏省灌云县数学八年级下册期末质量跟踪监视试题含解析_第4页
2024年江苏省灌云县数学八年级下册期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年江苏省灌云县数学八年级下册期末质量跟踪监视试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.为了了解中学课堂教学质量,我市教体局去年对全市中学教学质量进行调查方法是通过考试参加考试的为全市八年级学生,从中随机抽取600名学生的英语成绩进行分析对于这次调查,以下说法不正确的是()A.调查方法是抽样调查 B.全市八年级学生是总体C.参加考试的每个学生的英语成绩是个体 D.被抽到的600名学生的英语成绩是样本2.轮船从B处以每小时50海里的速度沿南偏东30°方向匀速航行,在B处观测灯塔A位于南偏东75°方向上,轮船航行半小时到达C处,在C处观测灯塔A位于北偏东60°方向上,则C处与灯塔A的距离是()海里.A. B. C.50 D.253.如图,△ABC中AB=AC,点D在AC边上,且BD=BC=AD,则∠A度数为()A.30° B.36° C.45° D.70°4.如图,有一块直角三角形纸片,两直角边AB=6,BC=8,将△ABC折叠,使AB落在斜边AC上,折痕为AD,则BD的长为()A.6 B.5 C.4 D.35.如图,已知A(2,1),现将A点绕原点O逆时针旋转90°得到A1,则A1的坐标是()A.(﹣1,2) B.(2,﹣1) C.(1,﹣2) D.(﹣2,1)6.在直角三角形中,如果有一个角是30°,那么下列各比值中,是这个直角三角形的三边之比的是()A.1∶2∶3 B.2∶3∶4C.1∶4∶9 D.1∶∶27.不等式组的解集在数轴上表示为()A. B.C. D.8.如果a>b,下列各式中正确的是()A.ac>bc B.a﹣3>b﹣3 C.﹣2a>﹣2b D.9.下列运算正确的是()A. B.(m2)3=m5 C.a2•a3=a5 D.(x+y)2=x2+y210.下列图形是中心对称图形的是()A. B. C. D.11.小明在学完一次函数时发现,可以运用画一次函数图象的方法求二元一次方程组的解.小明在同一平面直角坐标系中作出相应的两个一次函数的图象如图所示.则小明所解的二元一次方程组是()A. B. C. D.12.下列二次根式中,属于最简二次根式的是(

)A. B. C. D.二、填空题(每题4分,共24分)13.关于x的一元二次方程x2+4x+2k﹣1=0有两个实数根,则k的取值范围是_____.14.如图,在平面直角坐标系中,点,过点作的垂线交轴于点,过点作的垂线交轴于点,过点作的垂线交轴于点……按此规律继续作下去,直至得到点为止,则点的坐标为_________.15.如图,过正方形的顶点作直线,过作的垂线,垂足分别为.若,,则的长度为.16.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A(﹣2,1)和B(﹣2,﹣3),那么第一架轰炸机C的平面坐标是_____.17.与最简二次根式是同类二次根式,则__________.18.如图,在中,点分别在上,且,,则___________三、解答题(共78分)19.(8分)一块直角三角形木块的面积为1.5m2,直角边AB长1.5m,想要把它加工成一个面积尽可能大的正方形桌面,甲、乙两人的加工方法分别如图①、图②所示。你能用所学知识说明谁的加工方法更符合要求吗?20.(8分)如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与轴交于点.(1)求该抛物线的解析式;(2)P是y轴正半轴上一点,且△PAB是以AB为腰的等腰三角形,试求点P的坐标;(3)作直线BC,若点Q是直线BC下方抛物线上的一动点,三角形QBC面积是否有最大值,若有,请求出此时Q点的坐标;若没有,请说明理由.21.(8分)王达和李力是八(2)班运动素质最好的两位同学,为了选出一名同学参加全校的体育运动大寒,班主任针对学校要测试的五个项目,对两位同学进行相应的测试(成绩:分),结果如下:姓名力量速度耐力柔韧灵敏王达60751009075李力7090808080根据以上测试结果解答下列问题:(1)补充完成下表:姓名平均成绩(分)中位数(分)众数(分)方差(分2)王达807575190李力(2)任选一个角度分析推选哪位同学参加学校的比赛比较合适?并说明理由;(3)若按力量:速度:耐力:柔韧:灵敏=1:2:3:3:1的比例折合成综合分数,推选得分同学参加比赛,请通过计算说明应推选哪位同学去参赛。22.(10分)在平面直角坐标系中,四边形OBCD是正方形,且D(0,2),点E是线段OB延长线上一点,M是线段OB上一动点(不包括点O、B),作MN⊥DM,垂足为M,交∠CBE的平分线于点N.(1)写出点C的坐标;(2)求证:MD=MN;(3)连接DN交BC于点F,连接FM,下列两个结论:①FM的长度不变;②MN平分∠FMB,其中只有一个结论是正确的,请你指出正确的结论,并给出证明23.(10分)如图,在平面直角坐标系xOy中,一次函数的图象与正比例函数的图象交于点A(2,m),一次函数的图象分别与x轴、y轴交于B、C两点.(1)求m、k的值;(2)求∠ACO的度数和线段AB的长.24.(10分)如图,在正方形ABCD中,点E在边AD上,点F在边BC的延长线上,连结EF与边CD相交于点G,连结BE与对角线AC相交于点H,AE=CF,BE=EG.(1)求证:EF∥AC;(2)求∠BEF大小;25.(12分)如图,函数与的图象交于.(1)求出,的值.(2)直接写出不等式的解集;(3)求出的面积26.如图,正方形网格中每个小正方形边长都是,图中标有、、、、、、共个格点(每个小格的顶点叫做格点)(1)从个格点中选个点为顶点,在所给网格图中各画出-一个平行四边形:(2)在(1)所画的平行四边形中任选-一个,求出其面积.

参考答案一、选择题(每题4分,共48分)1、B【解析】

根据全面调查与抽样调查的定义,总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,对各选项分析后利用排除法求解.【详解】、调查方法是抽样调查,正确;、全市八年级学生的英语成绩是总体,错误;、参加考试的每个学生的英语成绩是个体,正确;、被抽到的600名学生的英语成绩是样本,正确.故选:.【点睛】此题考查了总体、个体、样本、样本容量.解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考察对象是相同的,所不同的是范围的大小,样本容量是样本中包含的个体的数目,不能带单位.2、D【解析】

根据题中所给信息,求出∠BCA=90°,再求出∠CBA=45°,从而得到△ABC为等腰直角三角形,然后根据解直角三角形的知识解答.【详解】根据题意,∠1=∠2=30°,∵∠ACD=60°,∴∠ACB=30°+60°=90°,∴∠CBA=75°﹣30°=45°,∴∠A=45°,∴AB=AC.∵BC=50×0.5=25,∴AC=BC=25(海里).故选D.考点:1等腰直角三角形;2方位角.3、B【解析】

∵BD=BC=AD,AC=AB,∴∠A=∠ABD,∠C=∠ABC=∠CDB,设∠A=x°,则∠ABD=∠A=x°,∴∠C=∠ABC=∠CDB=∠A+∠ABD=2x°,∵∠A+∠C+∠ABC=180°,∴x+2x+2x=180,∴x=36,∴∠A=36°.故选B.考点:1.等腰三角形的性质;2.三角形内角和定理.4、D【解析】

设点B落在AC上的E点处,连接DE,如图所示,由三角形ABC为直角三角形,由AB与BC的长,利用勾股定理求出AC的长,设BD=x,由折叠的性质得到ED=BD=x,AE=AB=6,进而表示出CE与CD,在直角三角形DEC中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即可确定出BD的长.【详解】解:∵△ABC为直角三角形,AB=6,BC=8,∴根据勾股定理得:,设BD=x,由折叠可知:ED=BD=x,AE=AB=6,可得:CE=AC-AE=10-6=4,CD=BC-BD=8-x,在Rt△CDB'中,根据勾股定理得:(8-x)2=42+x2,解得:x=1,则BD=1.故答案为:1.【点睛】此题考查了勾股定理,利用了方程的思想,熟练掌握勾股定理的解本题的关键.5、A【解析】

根据点(x,y)绕原点逆时针旋转90°得到的坐标为(-y,x)解答即可.【详解】已知A(2,1),现将A点绕原点O逆时针旋转90°得到A1,所以A1的坐标为(﹣1,2).故选A.【点睛】本题考查的是旋转的性质,熟练掌握坐标的旋转是解题的关键.6、D【解析】设30°角所对的直角边为a,根据30°角所对的直角边等于斜边的一半求出斜边的长度,再利用勾股定理求出另一条边的长度,然后即可求出比值.解:如图所示,设30°角所对的直角边BC=a,

则AB=1BC=1a,

∴AC=,

∴三边之比为a:a:1a=1::1.

故选D.“点睛”本题主要考查了含30度角的直角三角形的边的关系,勾股定理,是基础题,作出草图求解更形象直观.7、C【解析】

分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:解不等式x-1>0,得:x>1,

解不等式4x≤8,得:x≤2,

则不等式组的解集为1<x≤2,

故选:C.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.8、B【解析】

根据不等式的性质对各选项分析判断即可得解.【详解】解:A、a>b不等式两边都乘以c,c的正负情况不确定,所以ac>bc不一定成立,故本选项错误;

B、a>b不等式的两边都减去3可得a-3>b-3,故本选项正确;

C、a>b不等式的两边都乘以-2可得-2a<-2b,故本选项错误;

D、a>b不等式两边都除以2可得,故本选项错误.

故选:B.【点睛】本题主要考查了不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.9、C【解析】A、=3,本选项错误;B、(m2)3=m6,本选项错误;C、a2•a3=a5,本选项正确;D、(x+y)2=x2+y2+2xy,本选项错误,故选C10、B【解析】

根据中心对称图形的概念,轴对称图形与中心对称图形是图形沿对称中心旋转180度后与原图重合,即可解题.A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选B.考点:中心对称图形.【详解】请在此输入详解!11、C【解析】

先利用待定系数求出两函数解析式,由于函数图象交点坐标为两函数解析式组成的方程组的解,则可判断所解的二元一次方程组为两解析式所组成的方程组.【详解】解:设过点(1,1)和(0,-1)的直线解析式为y=kx+b,

则,

解得,

所以直线解析式为y=2x-1;

设过点(1,1)和(0,2)的直线解析式为y=mx+n,

则,

解得,

所以直线解析式为y=-x+2,

所以所解的二元一次方程组为.

故选C.【点睛】本题考查了一次函数与二元一次方程(组):函数图象交点坐标为两函数解析式组成的方程组的解.12、C【解析】

满足下列两个条件的二次根式,叫做最简二次根式:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式.【详解】A、=,故A不是;B、=,故B不是;C、,是;D、=,故D不是.故选C【点睛】考查了最简二次根式的概念,熟练掌握最简二次根式所需要满足的条件是解题的关键.二、填空题(每题4分,共24分)13、k≤【解析】

根据方程有两个实数根可以得到根的判别式,进而求出的取值范围.【详解】解:由题意可知:解得:故答案为:【点睛】本题考查了根的判别式的逆用---从方程根的情况确定方程中待定系数的取值范围,属中档题型,解题时需注意认真理解题意.14、【解析】

分别写出、、的坐标找到变化规律后写出答案即可.【详解】解:、,,的坐标为:,同理可得:的坐标为:,的坐标为:,,点横坐标为,即:,点坐标为,,故答案为:,.【点睛】本题考查了规律型问题,解题的关键是根据点的坐标的变化得到规律,利用得到的规律解题.15、【解析】

先利用AAS判定△ABE≌△BCF,从而得出AE=BF,BE=CF,最后得出AB的长.【详解】∵四边形ABCD是正方形,∴∠CBF+∠FBA=90°,∠CBF+∠BCF=90°,∴∠BCF=∠ABE,∵∠AEB=∠BFC=90°,AB=BC,∴△ABE≌△BCF(AAS)∴AE=BF,BE=CF,∴AB=.故答案为16、(2,-1).【解析】试题分析:如图,根据A(-2,1)和B(-2,-3)确定平面直角坐标系,然后根据点C在坐标系中的位置确定点C的坐标为(2,-1).考点:根据点的坐标确定平面直角坐标系.17、1【解析】

先把化为最简二次根式,再根据同类二次根式的定义得到m+1=2,然后解方程即可.【详解】解:∵,∴m+1=2,∴m=1.故答案为1.【点睛】本题考查了同类二次根式:几个二次根式化为最简二次根式后,若被开方数相同,那么这几个二次根式叫同类二次根式.18、【解析】

根据相似三角形的判定定理得到△ADE∽△ABC,根据相似三角形的性质计算即可.【详解】∵DE∥BC,

∴△ADE∽△ABC,∴,

∴,

故答案为:.【点睛】此题考查相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.三、解答题(共78分)19、甲的加工更符合要求.图①中正方形的边长是,图②中的正方形边长是,因为>,所以甲的加工更符合要求.【解析】由于有正方形的一边平行于三角形的一边,故可用相似三角形的性质求解.20、(1)y=x2-2x-2;(2)P点的坐标为(0,)或(0,);(2)点Q(,-).【解析】

(1)把A(﹣1,0),B(2,0)两点代入y=-x2+bx+c即可求出抛物线的解析式;(2)由A(﹣1,0),B(2,0)可得AB=1,由△PAB是以AB为腰的等腰三角形,可分两种情况PA=AB=1时,PB=AB=1时,根据勾股定理分别求出OP的长即可求解;(2)由抛物线得C(0,-2),求出直线BC的解析式,过点Q作QM∥y轴,交BC于点M,设Q(x,x2-2x-2),则M(x,x-2),根据三角形QBC面积S=QM∙OB得出二次函数解析式,根据二次函数的性质即可求出Q点坐标及△QBC面积的最大值【详解】解:(1)因为抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(2,0)两点,所以可得解得.所以该抛物线的解析式为:y=x2-2x-2;(2)由A(﹣1,0),B(2,0)可得AB=1.因为P是y轴正半轴上一点,且△PAB是以AB为腰的等腰三角形,可得PA=1或PB=1.当PA=1时,因为A(﹣1,0),所以OP==,所以P(0,);当PB=1时,因为B(2,0),所以OP==,所以P(0,);所以P点的坐标为(0,)或(0,);(2)对于y=x2-2x-2,当x=0时,y=-2,所以点C(0,-2)设直线BC的解析式为:y=kx+b(k≠0),B(2,0),C(0,-2)可得解得所以直线BC的解析式为:y=x-2.过点Q作QM∥y轴,交BC于点M,设Q(x,x2-2x-2),则M(x,x-2).所以三角形QBC的面积为S=QM∙OB=[(x-2)-(x2-2x-2)]×2=-x2+x.因为a=-<0,函数图象开口方向向下,所以函数有最大值,即三角形QBC面积有最大值.此时,x=-=,此时Q点的纵坐标为-,所以点Q(,-).【点睛】本题考查二次函数综合,用到的知识点是二次函数的图象与性质、三角形的面积、等腰三角形的判定、直线与抛物线的交点,关键是理解坐标与图形性质,会利用分类讨论的思想解决数学问题.21、(1)80,80,80,40(2)答案见解析(3)李力【解析】

(1)利用平均数的计算方法求出李力测试成绩的平均数,再求出中位数和众数,然后利用方差公式求出李力测试成绩的方差,填表即可;(2)可以根据表中数据,从两人的平均数,中位数,众数,方差进行分析,可得出结果;(3)根据已知力量:速度:耐力:柔韧:灵敏=1:2:3:3:1的比例折合成综合分数,分别算出两人的综合分数,再比较大小即可得出去参加比赛的选手.【详解】(1)解:李力的平均成绩为:;将5个数排序70,80,80,80,90,最中间的数是80,∴李力的测试成绩的中位数为80;∵80出现了3次,是这组数据中出现次数最多的数,∴这组数据的众数是80;李力测试成绩的方差为:,填表如下姓名平均成绩(分)中位数(分)众数(分)方差(分2)王达807575190李力80808040(2)解:根据表中数据可知,两人的平均成绩相同,从中位数和众数看,李力的成绩比王达的成绩好,从方差看,李力测试成绩的方差比王达次数成绩的方差小,可知李力的成绩比王达的成绩稳定,因此应该推选李力参加比赛。(3)解:∵按力量:速度:耐力:柔韧:灵敏=1:2:3:3:1的比例折合成综合分数,∴王达的成绩为:60×1+75×2+100×3+90×3+75×1=855;李力的成绩为:70×1+90×2+80×3+80×3+80×1=910;910>855∴选李力去参加比赛.【点睛】本题考查了平均数,中位数,众数,方差的意义.平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数);一组数据中出现次数最多的数据叫做众数.方差是用来衡量一组数据波动大小的量.解题的关键是正确理解各概念的含义.22、(1)点的坐标为;(2)见解析;(3)MN平分∠FMB成立,证明见解析【解析】

(1)根据四边形OBCD是正方形所以点C的坐标应该是C(2,2);(2)可通过构建全等三角形来求解.在OD上取OH=OM,通过证三角形DHM和MBN全等来得出DM=MN.(3)本题也是通过构建全等三角形来求解的.在BO延长线上取OA=CF,通过三角形OAD,FDC和三角形DAM,DMF这两对全等三角形来得出FM和OM,CF的关系,从而得出FM是否是定值.然后再看∠FMN是否与∠NME相等.【详解】(1)∵四边形是正方形,,∴∴点的坐标为(2)在OD上取OH=OM,连接HM,∵OD=OB,OH=OM,∴HD=MB,∠OHM=∠OMH,∴∠DHM=180°−45°=135°,∵NB平分∠CBE,∴∠NBE=45°,∴∠NBM=180°−45°=135°,∴∠DHM=∠NBM,∵∠DMN=90°,∴∠DMO+∠NMB=90°,∵∠HDM+∠DMO=90°,∴∠HDM=∠NMB,在△DHM和△MBN中,,∴△DHM≌△MBN(ASA),∴DM=MN.(3)MN平分∠FMB成立。证明如下:在BO延长线上取OA=CF,可证△DOA≌△DCF,△DMA≌△DMF,FM=MA=OM+CF(不为定值),∠DFM=∠DAM=∠DFC,过M作MP⊥DN于P,则∠FMP=∠CDF,由(2)可知∠NMF+∠FMP=∠PMN=45°,∠NMB=∠MDH,∠MDO+∠CDF=45°,进一步得∠NMB=∠NMF,即MN平分∠FMB.【点睛】此题考查角平分线的性质,正方形的性质,坐标与图形性质,全等三角形的判定与性质,解题关键在于作辅助线23、(1)m=4,k=2;(2)∠ACO=45°,AB.【解析】

(1)将点A(2,m)代入y=-x+6可得m的值,再将所得点A坐标代入y=kx可得k;

(2)先求得点B、C的坐标,从而得出△OBC是等腰直角三角形,据此知∠ACO=45°,根据勾股定理可得AB的长.【详解】解:(1)把A(2,m)代入y=-x+6得:m=-2+6=4,

把A(2,4)代入y=kx得4=2k,解得k=2;

(2)由y=-x+6可得B(6,0)、C(0,6),

∴OB=OC=6,

∴△OBC是等腰直角三角形,

∴∠ACO=45°.

设AD⊥x轴于点D,AE⊥y轴于点E,

则AD=4,BD=OB-OD=6-2=4,

在Rt△A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论