2024届江苏省苏州市新区一中学八年级下册数学期末学业水平测试模拟试题含解析_第1页
2024届江苏省苏州市新区一中学八年级下册数学期末学业水平测试模拟试题含解析_第2页
2024届江苏省苏州市新区一中学八年级下册数学期末学业水平测试模拟试题含解析_第3页
2024届江苏省苏州市新区一中学八年级下册数学期末学业水平测试模拟试题含解析_第4页
2024届江苏省苏州市新区一中学八年级下册数学期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省苏州市新区一中学八年级下册数学期末学业水平测试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图,在正方形中,是上的一点,且,则的度数是()A. B. C. D.2.在实际生活中,我们经常利用一些几何图形的稳定性或不稳定性,下列实物图中利用了稳定性的是()A.电动伸缩门 B.升降台C.栅栏 D.窗户3.样本方差的计算公式中,数字30和20分别表示样本的(

)A.众数、中位数 B.方差、标准差 C.数据的个数、中位数 D.数据的个数、平均数4.如图,在一次实践活动课上,小明为了测量池塘B、C两点间的距离,他先在池塘的一侧选定一点A,然后测量出AB、AC的中点D、E,且DE=10m,于是可以计算出池塘B、C两点间的距离是()A.5m B.10m C.15m D.20m5.若关于的一元二次方程有两个不相等的实数根,则一次函数的图象可能是:A. B. C. D.6.一个多边形的内角和比其外角和的2倍多180°,那么这个多边形是()A.五边形 B.六边形 C.七边形 D.八边形7.在今年“全国助残日”捐款活动中,某班级第一小组7名同学积极捐出自己的零花钱,奉献自己的爱心.他们捐款的数额分别是(单位:元)50,20,50,30,25,50,55,这组数据的众数和中位数分别是().A.50元,30元 B.50元,40元C.50元,50元 D.55元,50元8.下列成语描述的事件为随机事件的是()A.守株待兔 B.水中捞月 C.瓮中捉鳖 D.水涨船高9.下面四个应用图标中,既是轴对称图形又是中心对称图形的是()A. B. C. D.10.温州某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表:零件个数(个)

5

6

7

8

人数(人)

3

15

22

10

表中表示零件个数的数据中,众数是()A.5个 B.6个 C.7个 D.8个二、填空题(每小题3分,共24分)11.化简:=.12.如图:使△AOB∽△COD,则还需添加一个条件是:.(写一个即可)13.矩形的长和宽是关于的方程的两个实数根,则此矩形的对角线之和是________.14.三角形的两边长分别为3和6,第三边的长是方程-6x+8=0的解,则此三角形的第三边长是_____15.当a=-3时,=_____.16.有甲、乙两张纸条,甲纸条的宽度是乙纸条宽的2倍,如图,将这两张纸条交叉重叠地放在一起,重合部分为四边形ABCD.则AB与BC的数量关系为.17.如图是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若,,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到如图所示的“数学风车”,则这个风车的外围周长是___.18.如图所示,△ABC中,AH⊥BC于H,点E,D,F分别是AB,BC,AC的中点,HF=10cm,则ED的长度是_____cm.三、解答题(共66分)19.(10分)计算:4(﹣)﹣÷+(+1)1.20.(6分)某社区准备在甲乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单位:环)相同.第1次第2次第3次第4次第5次甲成绩94746乙成绩757a7(1)a=__,x乙=____(2)①分别计算甲、乙成绩的方差.②请你从平均数和方差的角度分析,谁将被选中.21.(6分)某个体户购进一批时令水果,20天销售完毕,他将本次的销售情况进行了跟踪记录,根据所记录的数据绘制如图所示的函数图象,其中日销售量y(千克)与销售时间x(天)之间的函数关系如图甲,销售单价P(元/千克)与销售时间x(天)之间的关系如图乙.(1)求y与x之间的函数关系式.(2)分别求第10天和第15天的销售金额.(3)若日销售量不低于24千克的时间段为“最佳销售期”,则此次销售过程中“最佳销售期”共有多少天?在此期间销售单价最高为多少元?22.(8分)社区利用一块矩形空地建了一个小型的惠民停车场,其布局如图所示.已知停车场的长为52米,宽为28米,阴影部分设计为停车位,要铺花砖,其余部分是等宽的通道.已知铺花砖的面积为640平方米.(1)求通道的宽是多少米?(2)该停车场共有车位64个,据调查分析,当每个车位的月租金为200元时,可全部租出;当每个车位的月租金每上涨10元,就会少租出1个车位.当每个车位的月租金上涨多少元时,停车场的月租金收入为14400元?23.(8分)平面直角坐标系xOy中,直线y=x+b与直线y=x交于点A(m,1).与y轴交于点B(1)求m的值和点B的坐标;(2)若点C在y轴上,且△ABC的面积是1,请直接写出点C的坐标.24.(8分)如图,在平面直角坐标系xOy中,矩形ABCD的边AD=6,A(1,0),B(9,0),直线y=kx+b经过B、D两点.(1)求直线y=kx+b的表达式;(2)将直线y=kx+b平移,当它与矩形没有公共点时,直接写出b的取值范围.25.(10分)已知:在平面直角坐标系中,直线分别交、轴于点A、B两点,OA=5,∠OAB=60°.(1)如图1,求直线AB的解析式;(2)如图2,点P为直线AB上一点,连接OP,点D在OA延长线上,分别过点P、D作OA、OP的平行线,两平行线交于点C,连接AC,设AD=m,△ABC的面积为S,求S与m的函数关系式;(3)如图3,在(2)的条件下,在PA上取点E,使PE=AD,连接EC,DE,若∠ECD=60°,四边形ADCE的周长等于22,求S的值.26.(10分)解不等式组:,并在数轴上表示出它的解集.

参考答案一、选择题(每小题3分,共30分)1、B【解析】

在正方形中可知∠BAC=45°,由AB=AE,进而求出∠ABE,又知∠ABE+∠EBC=90°,故能求出∠EBC.【详解】解:在正方形ABCD中,∠BAC=45°,∵AB=AE,∴∠ABE=∠AEB=67.5°,∵∠ABE+∠EBC=90°,∴∠EBC=22.5°,故选B.【点睛】本题主要考查正方形的性质,等腰三角形的性质等知识点,熟练掌握基础知识是解题关键.2、C【解析】

根据三角形具有稳定性和四边形具有不稳定性进行辨别即可.【详解】A.由平行四边形的特性可知,平行四边形具有不稳定性,所以容易变形,伸缩门运用了平行四边形易变形的特性;B.升降台也是运用了四边形易变形的特性;C.栅栏是由一些三角形焊接而成的,它具有稳定性;D.窗户是由四边形构成,它具有不稳定性.故选C.【点睛】此题主要考查了平行四边形的特性是容易变形以及三角形具有稳定性.3、D【解析】【分析】方差公式中,n、分别表示数据的个数、平均数.【详解】样本方差的计算公式中,数字30和20分别表示样本的数据的个数、平均数.故选:D【点睛】本题考核知识点:方差.解题关键点:理解方差公式的意义.4、D【解析】

根据三角形中位线定理可得到BC=2DE,可得到答案.【详解】∵D、E分别为AB、AC的中点,∴DE为△ABC的中位线,∴BC=2DE=20m,故选D.【点睛】本题主要考查三角形中位线定理,掌握三角形中位线平行第三边且等于第三边的一半是解题的关键.5、B【解析】

由方程有两个不相等的实数根,可得,解得,即异号,当时,一次函数的图象过一三四象限,当时,一次函数的图象过一二四象限,故答案选B.6、C【解析】

设这个多边形的边数为n,根据多边形内角和公式和外角和定理建立方程求解.【详解】设这个多边形的边数为n,由题意得解得:故选C.【点睛】本题考查多边形的内角和与外角和,熟记多边形内角和公式,以及外角和360°,是解题的关键.7、C【解析】

1出现了3次,出现的次数最多,则众数是1;把这组数据从小到大排列为:20,25,30,1,1,1,55,最中间的数是1,则中位数是1.故选C.8、A【解析】

根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A.守株待兔是随机事件,故A符合题意;B.水中捞月是不可能事件,故B不符合题意;C.瓮中捉鳖是必然事件,故C不符合题意;D.水涨船高是必然事件,故D不符合题意;故选:A.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9、C【解析】

根据轴对称图形和中心对称图形的概念即可得出.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,是中心对称图形,故此选项正确;D、不是轴对称图形,是中心对称图形,故此选项错误;故选C.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形:在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形.中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.10、C【解析】

解:数字7出现了22次,为出现次数最多的数,故众数为7个,故选C.【点睛】本题考查众数.二、填空题(每小题3分,共24分)11、2【解析】

根据算术平方根的定义,求数a的算术平方根,也就是求一个正数x,使得x2=a,则x就是a的算术平方根,特别地,规定0的算术平方根是0.【详解】∵22=4,∴=2.【点睛】本题考查求算术平方根,熟记定义是关键.12、∠A=∠C(答案不唯一).【解析】

添加条件是∠A=∠C,根据相似三角形的判定(有两角对应相等的两三角形相似)证明即可.【详解】添加的条件是:∠A=∠C,理由是:∵∠A=∠C,∠DOC=∠BOA,∴△AOB∽△COD,故答案为:∠A=∠C.本题答案不唯一.13、1【解析】

设矩形的长和宽分别为a、b,根据根与系数的关系得到a+b=7,ab=12,利用勾股定理得到矩形的对角线长=,再利用完全平方公式和整体代入的方法可计算出矩形的对角线长为5,则根据矩形的性质得到矩形的对角线之和为1.【详解】设矩形的长和宽分别为a、b,

则a+b=7,ab=12,

所以矩形的对角线长==5,

所以矩形的对角线之和为1.

故答案为:1.【点睛】本题考查了根与系数的关系,矩形的性质,解题关键在于掌握运算公式.14、1【解析】

求出方程的解,有两种情况:x=2时,看看是否符合三角形三边关系定理;x=1时,看看是否符合三角形三边关系定理;求出即可.【详解】解:x2-6x+8=0,

(x-2)(x-1)=0,

x-2=0,x-1=0,

x1=2,x2=1,

当x=2时,2+3<6,不符合三角形的三边关系定理,所以x=2舍去,

当x=1时,符合三角形的三边关系定理,此三角形的第三边长是1,

故答案为:1.【点睛】本题考查三角形的三边关系定理和解一元二次方程等知识点,关键是掌握三角形的三边关系定理,三角形的两边之和大于第三边.15、1【解析】

把a=-1代入二次根式进行化简即可求解.【详解】解:当a=-1时,=1.

故答案为:1.【点睛】本题考查二次根式的计算,理解算术平方根的意义是解题的关键.16、AB=2BC.【解析】

过A作AE⊥BC于E、作AF⊥CD于F,∵甲纸条的宽度是乙纸条宽的2倍,∴AE=2AF,∵纸条的两边互相平行,∴四边形ABCD是平行四边形,∴∠ABC=∠ADC,AD=BC,∵∠AEB=∠AFD=90°,∴△ABE∽△ADF,∴,即.故答案为AB=2BC.【点睛】考点:相似三角形的判定与性质.点评:本题考查的是相似三角形的判定与性质,根据题意作出辅助线,构造出相似三角形是解答此题的关键.17、1【解析】

通过勾股定理可将“数学风车”的斜边求出,然后可求出风车外围的周长.【详解】如图,根据题意,AD=AC=6,,,,,即,,,这个风车的外围周长是,故答案为1.【点睛】本题考查勾股定理在实际情况中应用,并注意隐含的已知条件来解答此类题.18、1【解析】

分析中先利用直角三角形的性质,然后再利用三角形的中位线定理可得结果.【详解】∵AH⊥BC,F是AC的中点,

∴FH=AC=1cm,

∴AC=20cm,

∵点E,D分别是AB,BC的中点,

∴ED=AC,

∴ED=1cm.

故答案为:1.【点睛】本题考查的知识点:三角形中位线定理和直角三角形斜边上的中线等于斜边的一半,是基础知识较简单.三、解答题(共66分)19、1﹣6.【解析】

先根据二次根式的乘除法则和完全平方公式计算,然后合并即可.【详解】原式=4﹣4﹣+3+1+1=1﹣8﹣4+4+1=1﹣6.故答案为:1﹣6.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20、(1)4,6;(2)乙【解析】

(1)根据总成绩相同可求得a;(2)根据方差公式,分别求两者方差.即s²=1n[(x1-x)²+(x2-x)²+...+(xn-x)²];【详解】(1)由题意得:甲的总成绩是:9+4+7+4+6=30,则a=30﹣7﹣7﹣5﹣7=4,x乙(2)甲的方差为:15[(9﹣6)2+(4﹣6)2+(7﹣6)2+(4﹣6)2+(6﹣6)2乙的方差为:15[(7﹣6)2+(5﹣6)2+(7﹣6)2+(4﹣6)2+(7﹣6)2②因为两人成绩的平均水平(平均数)相同,根据方差得出乙的成绩比甲稳定,所以乙将被选中;【点睛】本题考核知识点:平均数,方差.解题关键点:理解平均数和方差的意义.21、(1)当;(2)第10天:200元,第15天:270元;(3)最佳销售期有5天,最高为9.6元.【解析】

(1)分两种情况进行讨论:①0≤x≤15;②15<x≤20,针对每一种情况,都可以先设出函数的解析式,再将已知点的坐标代入,利用待定系数法求解;

(2)日销售金额=日销售单价×日销售量.由于第10天和第15天在第10天和第20天之间,当10≤x≤20时,设销售单价p(元/千克)与销售时间x(天)之间的函数关系式为p=mx+n,由点(10,10),(20,8)在p=mx+n的图象上,利用待定系数法求得p与x的函数解析式,继而求得10天与第15天的销售金额.

(3)日销售量不低于1千克,即y≥1.先解不等式2x≥1,得x≥12,再解不等式﹣6x+120≥1,得x≤16,则求出“最佳销售期”共有5天;然后根据.(10≤x≤20),利用一次函数的性质,即可求出在此期间销售时单价的最高值.【详解】解:(1)①当0≤x≤15时,设日销售量y与销售时间x的函数解析式为y=k1x,

∵直线y=k1x过点(15,30),∴15k1=30,解得k1=2.

∴y=2x(0≤x≤15);

②当15<x≤20时,设日销售量y与销售时间x的函数解析式为y=k2x+b,

∵点(15,30),(20,0)在y=k2x+b的图象上,

∴,解得:.

∴y=﹣6x+120(15<x≤20).

综上所述,可知y与x之间的函数关系式为:..

(2)∵第10天和第15天在第10天和第20天之间,

∴当10≤x≤20时,设销售单价p(元/千克)与销售时间x(天)之间的函数解析式为p=mx+n,

∵点(10,10),(20,8)在z=mx+n的图象上,,解得:.

∴.

当x=10时,,y=2×10=20,销售金额为:10×20=200(元);

当x=15时,,y=2×15=30,销售金额为:9×30=270(元).

故第10天和第15天的销售金额分别为200元,270元.

(3)若日销售量不低于1千克,则y≥1.

当0≤x≤15时,y=2x,

解不等式2x≥1,得x≥12;

当15<x≤20时,y=﹣6x+120,

解不等式﹣6x+120≥1,得x≤16.

∴12≤x≤16.

∴“最佳销售期”共有:16﹣12+1=5(天).

∵(10≤x≤20)中<0,∴p随x的增大而减小.

∴当12≤x≤16时,x取12时,p有最大值,此时=9.6(元/千克).

故此次销售过程中“最佳销售期”共有5天,在此期间销售单价最高为9.6元【点睛】考核知识点:一次函数在销售中的运用.要注意理解题意,分类讨论情况.22、(1)6;(2)40或400【解析】

(1)设通道的宽x米,由图中所示可得通道面积为2×28x+2(52-2x)x,根据铺花砖的面积+通道面积=总面积列方程即可得答案;(2)设每个车位的月租金上涨a元,则少租出个车位,根据月租金收入为14400元列方程求出a值即可.【详解】(1)设通道的宽x米,根据题意得:2×28x+2(52-2x)x+640=52×28,整理得:x2-40x+204=0,解得:x1=6,x2=34(不符合题意,舍去).答:通道的宽是6米.(2)设每个车位的月租金上涨a元,则少租出个车位,根据题意得:(200+a)(64-)=14400,整理得:a2-440a+16000=0,解得:a1=40,a2=400.答:每个车位的月租金上涨40元或400元时,停车场的月租金收入为14400元.【点睛】本题考查一元二次方程的实际应用,读懂题意,找出题中的等量关系列出方程是解题关键.23、(1)m=2,B(0,2);(2)C(0,-1)或(0,-3).【解析】

(1)依据一次函数图象上点的坐标特征,即可得到m的值和点B的坐标;(2)依据点C在y轴上,且△ABC的面积是1,即可得到BC=1,进而得出点C的坐标.【详解】(1)∵直线y=x+b与直线y=x交于点A(m,1),∴m=1,∴m=2,∴A(2,1),代入y=x+b,可得×2+b=1,∴b=-2,∴B(0,-2).(2)点C(0,-1)或C(0,-3).理由:∵△ABC的面积是1,点C在y轴上,∴|BC|×2=1,∴|BC|=1,又∵B(0,-2),∴C(0,-1)或C(0,-3).【点睛】本题考查一次函数的交点问题以及三角形的面积,解答本题的关键是明确题意,找出所求问题需要的条件.24、(1)y=-34x+274【解析】试题分析:(1)求出B,D两点坐标,根据点在直线上点的坐标满足方程的关系,将B,D两点坐标代入y=kx+b中,得到方程组,解之即得直线y=kx+b的表达式.(2)将直线y=-34x+274平移,平移后的解析式为y=-34x+b,当它左移超过点A或右移超过点C时,它与矩形没有公共点.因此,只要将A,C两点坐标分别代入(1)∵A(1,0),B(9,0),AD=1.∴D(1,1).将B,D两点坐标代入y=kx+b中,得k+b=6    9k+b=0,解得∴直线的表达式为y=-3(2)b<34 考点:1.直线上点的坐标与方程的关系;2.平移的性质.25、(1)直线解析式为;(2)S=;(3).【解析】

(1)先求出点B坐标,设AB解析式为,把点A(5,0),B(0,)分别代入,利用待定系数法进行求解即可;(2)由题意可得四边形ODCP是平行四边形,∠OAB=∠APC=60°,则有PC=OD=5+m,∠PCH=30°,过点C作CH⊥AB,在Rt△PCH中利用勾股定理可求得CH=,再由S=ABCH代入相关数据进行整理即可得;(3)先求得∠PEC=∠ADC,设∠OPA=,则∠OPC=∠ADC=∠PEC=60°+,在BA延长线上截取AK=AD,连接OK,DK,DE,证明△ADK是等边三角形,继而证明△PEC≌△DKO,通过推导可得到OP=OK=CE=CD,再证明△CDE是等边三角形,可得CE=CD=DE,连接OE,证明△OPE≌△EDA,继而可得△OAE是等边三角形,得到OA=AE=5,根据四边形ADCE的周长等于22,可得ED=,过点E作EN⊥OD于点N,则DN=,由勾股定理得,可得关于m的方程,解方程求得m的值后即可求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论