




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省苏州市吴中学区统考2024届数学八年级下册期末达标检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.下列图形中,是中心对称图形的是()A. B. C. D.2.若一次函数y=kx+17的图象经过点(-3,2),则k的值为()A.-6B.6C.-5D.53.如图,已知直线y=3x+b与y=ax-2的交点的横坐标为,根据图象有下列3个结论:①a>0;②b<0;③x>-2是不等式
3x+b>ax-2的解集其中正确的个数是()A.0, B.1, C.2, D.34.某多边形的每个内角均为120°,则此多边形的边数为().A.5B.6C.7D.85.下列各式中是分式方程的是()A.1x B.x2+1=y C.6.在函数y=1-2x自变量xA.x≠12 B.x≥12 C.x≤12 D.7.在平面直角坐标系中,一次函数y=x﹣1和y=﹣x+1的图象与x轴的交点及x轴上方的部分组成的图象可以表示为函数y=|x﹣1|,当自变量﹣1≤x≤2时,若函数y=|x﹣a|(其中a为常量)的最小值为a+5,则满足条件的a的值为()A.﹣3 B.﹣5 C.7 D.﹣3或﹣58.下列各选项中因式分解正确的是()A. B.C. D.9.如图,以某点为位似中心,将△OAB进行位似变换得到△DFE,若△OAB与△DFE的相似比为k,则位似中心的坐标与k的值分别为()A.(2,2),2 B.(0,0),2 C.(2,2), D.(0,0),10.如图,OA=,以OA为直角边作Rt△OAA1,使∠AOA1=30°,再以OA1为直角边作Rt△OA1A2,使∠A1OA2=30°,……,依此法继续作下去,则A1A2的长为()A. B. C. D.二、填空题(每小题3分,共24分)11.为了解一批灯管的使用寿命,适合采用的调查方式是_____(填“普查”或“抽样调查”)12.如图,在△ABE中,∠E=30°,AE的垂直平分线MN交BE于点C,且AB=AC,则∠B=________.13.如图所示,在Rt△ABC中,∠C=90°,AC=4,将△ABC沿CB向右平移得到△DEF,若平移距离为2,则四边形ABED的面积等于_______.14.小明从A地出发匀速走到B地.小明经过(小时)后距离B地(千米)的函数图像如图所示.则A、B两地距离为_________千米.15.“绿水青山就是金山银山”.为了山更绿、水更清,某县大力实施生态修复工程,发展林业产业,确保到2021年实现全县森林覆盖率达到72.75%的目标.已知该县2019年全县森林覆盖率为69.05%,设从2019年起该县森林覆盖率年平均增长率为x,则可列方程___.16.如图,直线与轴正半轴交于点,与轴交于点,将沿翻折,使点落在点处,点是线段的中点,射线交线段于点,若为直角三角形,则的值为__________.17.如图,在平面直角坐标系中,菱形OABC的顶点O是原点,顶点B在y轴正半轴上,顶点A在第一象限,菱形的两条对角线长分别是8和6,函数y=kx(x<0)的图象经过点C,则k的值为________18.某水库的水位在5小时内持续上涨,初始的水位高度为6米,水位以每小时0.3米的速度匀速上升,则水库的水位高度y米与时间x小时(0≦x≦5)的函数关系式为___三、解答题(共66分)19.(10分)解不等式组把解集表示在数轴上,并求出不等式组的整数解.20.(6分)如图,在四边形ABCD中,AB=AD=4,∠A=60°,BC=4,CD=1.(1)求∠ADC的度数;(2)求四边形ABCD的面积.21.(6分)在直角坐标平面里,梯形ABCD各顶点的位置如图所示,图中每个小正方形方格的边长为1个单位长度.(1)求梯形ABCD的面积;(2)如果把梯形ABCD在坐标平面里先向右平移1个单位,然后向下平移2个单位得到梯形A1B1C1D1,求新顶点A1,B1,C1,D1的坐标.22.(8分)如图,在平面直角坐标系中,的顶点坐标分别,,,以坐标原点为位似中心,在第三象限画出与位似的三角形,使相似比为,并写出所画三角形的顶点坐标.23.(8分)解方程:(1)(2)24.(8分)在“母亲节”前夕,店主用不多于900元的资金购进康乃馨和玫瑰两种鲜花共500枝,康乃馨进价为2元/枝,玫瑰进价为1.5元/枝,问至少购进玫瑰多少枝?25.(10分)射阳县实验初中为了解全校学生上学期参加社区活动的情况,学校随机调查了本校50名学生参加社区活动的次数,并将调查所得的数据整理如下:参加社区活动次数的频数、频率分布表活动次数x频数频率0<x≤3100.203<x≤6a0.246<x≤9160.329<x≤1260.1212<x≤15mb15<x≤182n根据以上图表信息,解答下列问题:(1)表中a=,b=;(2)请把频数分布直方图补充完整(画图后请标注相应的数据);(3)若该校共有1200名学生,请估计该校在上学期参加社区活动超过6次的学生有多少人?26.(10分)在平面直角坐标系中,O为坐标原点.(1)已知点A(3,1),连接OA,作如下探究:探究一:平移线段OA,使点O落在点B,设点A落在点C,若点B的坐标为(1,2),请在图①中作出BC,点C的坐标是__________.探究二:将线段OA绕点O逆时针旋转90°,设点A落在点D,则点D的坐标是__________;连接AD,则AD=________(图②为备用图).(2)已知四点O(0,0),A(a,b),C,B(c,d),顺次连接O,A,C,B,O,若所得到的四边形为平行四边形,则点C的坐标是____________.
参考答案一、选择题(每小题3分,共30分)1、D【解析】
根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心可得答案.【详解】A、不是中心对称图形,故此选项错误;
B、不是中心对称图形,故此选项错误;
C、不是中心对称图形,故此选项错误;
D、是中心对称图形,故此选项正确;
故选:D.【点睛】本题考查了中心对称图形,解题的关键是掌握中心对称图形的定义.2、D【解析】
由一次函数经过(-3,2),故将x=-3,y=2代入一次函数解析式中,得到关于k的方程,求出方程的解即可得到k的值.【详解】由一次函数y=kx+17的图象经过点(-3,2),故将x=-3,y=2代入一次函数解析式得:2=-3k+17,解得:k=1,则k的值为1.故选D.【点睛】此题考查了待定系数法求一次函数解析式,灵活运用待定系数法是解本题的关键.3、C【解析】
根据一次函数的图象和性质可得a>0;b>0;当x>-2时,直线y=3x+b在直线y=ax-2的上方,即x>-2是不等式3x+b>ax-2的解集.【详解】解:由图象可知,a>0,故①正确;b>0,故②错误;当x>-2,直线y=3x+b在直线y=ax-2的上方,即x>-2是不等式3x+b>ax-2的解集,故③正确.故选:C.【点睛】本题考查了一次函数的图象和性质以及与一元一次不等式的关系,要熟练掌握.4、B【解析】先求出多边形的每一个外角的度数,再利用多边形的外角和即可求出答案.
解:
∵多边形的每一个内角都等于120°,多边形的内角与外角互为邻补角,
∴每个外角是度60°,
多边形中外角的个数是360÷60°=60°,则多边形的边数是6.
故选B.5、D【解析】
根据分式方程的定义,即可得出答案.【详解】A不是方程,故此选项错误;B是方程,但不是分式方程,故此选项错误;C是一元一次方程,不是分式方程,故此选项错误;D是分式方程,故答案选择D.【点睛】本题考查的是分式方程的定义,分式方程的定义:①形如AB的式子;②其中A,B均为整式,且B中含有字母6、C【解析】
根据被开方式大于或等于零解答即可.【详解】由题意得1-2x≥0,∴x≤12故选C.【点睛】本题考查了函数自变量的取值范围,函数有意义时字母的取值范围一般从几个方面考虑:①当函数解析式是整式时,字母可取全体实数;②当函数解析式是分式时,考虑分式的分母不能为0;③当函数解析式是二次根式时,被开方数为非负数.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.7、A【解析】
分三种情形讨论求解即可解决问题;【详解】解:对于函数y=|x﹣a|,最小值为a+1.情形1:a+1=0,a=﹣1,∴y=|x+1|,此时x=﹣1时,y有最小值,不符合题意.情形2:x=﹣1时,有最小值,此时函数y=x﹣a,由题意:﹣1﹣a=a+1,得到a=﹣2.∴y=|x+2|,符合题意.情形2:当x=2时,有最小值,此时函数y=﹣x+a,由题意:﹣2+a=a+1,方程无解,此种情形不存在,综上所述,a=﹣2.故选A.【点睛】本题考查两直线相交或平行问题,一次函数的性质等知识,解题的关键是学会用分类讨论的思想解决问题,属于中考常考题型.8、D【解析】
直接利用公式法以及提取公因式法分解因式进而判断即可.【详解】解:A.,故此选项错误;B.,故此选项错误;C.,故此选项错误;D.,正确.故选D.【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.9、A【解析】
两对对应点的连线的交点即为位似中心;找到任意一对对应边的边长,让其相比即可求得k.【详解】连接OD、BE,延长OD交BE的延长线于点O′,点O′也就是位似中心,坐标为(1,1),k=OA:FD=8:4=1.故选A.【点睛】本题考查了位似变换、坐标与图形的性质等知识,记住两对对应点的连线的交点为位似中心;任意一对对应边的比即为位似比.10、B【解析】
由含30°角的直角三角形的性质和勾股定理求出OA1,然后根据30°角的三角函数值求出A1A2即可.【详解】解:∵∠OAA1=90°,OA=,∠AOA1=30°,∴AA1=OA1,由勾股定理得:OA2+AA12=OA12,即()2+(OA1)2=OA12,解得:OA1=2,∵∠A1OA2=30°,∴A1A2的长==故选:B.【点睛】本题考查了勾股定理、含30°角的直角三角形的性质;熟练掌握勾股定理,通过计算得出规律是解决问题的关键.二、填空题(每小题3分,共24分)11、抽样调查.【解析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【详解】解:为了解一批灯管的使用寿命,调查具有破坏性,适合采用的调查方式是抽样调查,故答案为:抽样调查.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.12、60°【解析】分析:根据线段的垂直平分线的性质得到CA=CE,根据等腰三角形的性质得到∠CAE=∠E,根据三角形的外角的性质得到∠ACB=2∠E,根据等腰三角形的性质得到∠B即可.详解:∵MN是AE的垂直平分线,∴CA=CE,∴∠CAE=∠E,∴∠ACB=2∠E,∵AB=AC,∴∠B=∠ACB=2∠E=60°,故答案为:60°点睛:本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.13、1【解析】
先根据平移的性质可得,,,再根据矩形的判定与性质可得,从而可得,然后根据平行线四边形的判定可得四边形ABED是平行四边形,最后根据平行四边形的面积公式即可得.【详解】由平移的性质得,,四边形ACFD是矩形四边形ABED是平行四边形(一组对边平行且相等的四边形是平行四边形)则四边形ABED的面积为故答案为:1.【点睛】本题考查了平移的性质、平行四边形的判定、矩形的判定与性质等知识点,掌握平移的性质是解题关键.14、20【解析】
根据图象可知小明从A地出发匀速走到B地需要4小时,走3小时后距离B地5千米,所以小明的速度为5千米/时,据此解答即可.【详解】解:根据题意可知小明从A地出发匀速走到B地需要4小时,走3小时后距离B地5千米,所以小明的速度为5千米/时,
所以A、B两地距离为:4×5=20(千米).
故答案为:20【点睛】本题考查了一次函数的应用,观察函数图象结合数量关系,列式计算是解题的关键.15、69.05%(1+x)2=72.75%【解析】
此题根据从2019年起每年的森林覆盖率年平均增长率为x,分别列出2020年以及2021年得森林覆盖面积,即可得出方程.【详解】∵设从2019年起每年的森林覆盖率年平均增长率为x,∴根据题意得:2020年覆盖率为:69.05%(1+x),2021年为:69.05%(1+x)²=72.75%,故答案为:69.05%(1+x)²=72.75%【点睛】此题考查一元二次方程的应用,解题关键在于列出方程16、-1【解析】
根据一次函数解析式可得B点坐标为(0,),所以得出OB=,再由为直角三角形得出∠ADE为直角,结合是直角三角形斜边的中点进一步得出∠OBD=∠B0D=45°,∠DOA=∠DAO=45°,所以△AOB为等腰直角三角形,所以OA长度为,进而得出A点坐标,将其代入解析式即可得出k的值.【详解】由题意得:B点坐标为(0,),∴OB=,∵在直角三角形AOB中,点是线段的中点,∴OD=BD=AD,又∵为直角三角形,∴∠OBD=∠B0D=45°,∠DOA=∠DAO=45°,∴△AOB为等腰直角三角形,∴OA=OB=,∴A点坐标为(,0),∴,解得k=-1.故答案为:-1.【点睛】本题主要考查了一次函数与三角形性质的综合运用,熟练掌握相关概念是解题关键.17、-12.【解析】
根据题意可得点C的坐标为(-4,3),将点C的坐标代入y=kx中求得k值即可【详解】根据题意可得点C的坐标为(-4,3),将点C的坐标代入y=kx3=k-4解得k=-12.故答案为:-12.【点睛】本题考查了菱形的性质及求反比例函数的解析式,求得点C的坐标为(-4,3)是解决问题的关键.18、y=6+0.3x【解析】试题分析:根据题意可得:水库的水位=初始水位高度+每小时上升的速度×时间,即y=6+0.3x.考点:一次函数的应用.三、解答题(共66分)19、原不等式组的解集为,不等式组的整数解是.数轴见详解【解析】
先解不等式组中的每一个不等式,再根据大大取较大,小小取较小,大小小大取中间,大大小小无解,把它们的解集在数轴上表示出来,再取整数解.【详解】由①得x≥−由②得x<3∴原不等式组的解集为−≤x<3数轴表示:不等式组的整数解是-1,0,1,1.20、(1)150°;(2)【解析】
(1)连接BD,首先证明△ABD是等边三角形,可得∠ADB=60°,DB=4,再利用勾股定理逆定理证明△BDC是直角三角形,进而可得答案;(2)过B作BE⊥AD,利用三角形函数计算出BE长,再利用△ABD的面积加上△BDC的面积可得四边形ABCD的面积.【详解】(1)连接BD,∵AB=AD,∠A=60°,∴△ABD是等边三角形,∴∠ADB=60°,DB=4,∵42+12=(4)2,∴DB2+CD2=BC2,∴∠BDC=90°,∴∠ADC=60°+90°=150°;(2)过B作BE⊥AD,∵∠A=60°,AB=4,∴BE=AB•sin60°=4×=2,∴四边形ABCD的面积为:AD•EB+DB•CD=×4×2+×4×1=4+2.21、(1)12;(2)A1(﹣2,﹣3),B1(3,﹣3),C1(3,0),D1(0,0)【解析】试题分析:(1)判断出A、B、C、D四点坐标,利用梯形的面积公式计算即可;
(2)则平移公式为:,即可解决问题;试题解析:(1)由图可知:A(﹣3,﹣1)、B(2,﹣1)、C(2,2)、D(﹣1,2)AB∥CD,BC⊥AB,所以,梯形ABCD是直角梯形,AB=5,DC=3,BC=3,梯形ABCD的面积是S=(2)如果把梯形ABCD在坐标平面里先向右平移1个单位,然后向下平移2个单位,则平移公式为:所以,平移以后所得梯形A1B1C1D1各顶点的坐标分别为:A1(﹣2,﹣3),B1(3,﹣3),C1(3,0),D1(0,0)A1(-2,-3),B1(3,-3),C1(3,0),D1(0,0)【点睛】考查梯形的面积公式.、坐标与图形的性质、平移变换等知识,解题的关键是熟练掌握坐标与图形的性质,正确写出点的坐标是解决问题的关键.22、见解析,,,.【解析】
直接利用位似图形的性质得出对应点位置进而得出答案.【详解】解:如图所示:,则,,.【点睛】此题主要考查了位似变换,以及坐标与图形的性质,关键是掌握若位似比是k,则原图形上的点(x,y),经过位似变化得到的对应点的坐标是(kx,ky)或(-kx,-ky).23、(1)原方程无解;(1)x=6或x=-1.【解析】【分析】(1)先去分母,化为整式方程,解整式方程后进行检验即可得答案;(1)利用因式分解法进行求解即可得.【详解】(1)两边同乘(x-1),得1=x-1-3(x-1),解得:x=1,检验:x=1时,x-1=0,x=1是原方程的增根,原方程无解;(1)因式分解,得(x-6)(x+1)=0,x-6=0或x+1=0,x=6或x=-1.【点睛】本题考查了解分式方程以及解一元二次方程,熟练掌握分式方程的解法、注意事项以及一元二次方程的解法是解题的关键.24、至少购进玫瑰200枝.【解析】
由康乃馨和玫瑰共500枝,可设玫瑰x枝,康乃馨(500-x)枝,可求出每种花的总进价,再利用两种花总进价和“不多于900元”列出不等式并解答.【详解】解:设购进玫瑰x枝,则购进康乃馨(500-x)枝,列不等式得:1.5x+2(500-x)≤900解得:x≥200答:至少购进玫瑰200枝.【点睛】本题考查了一元一次不等式的应用,关键是找准不等关系列不等式,是常考题型.25、(1)12;0.08(2)12(3)672【解析】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 河南省开封市郊区2025届数学三下期末学业水平测试模拟试题含解析
- 内蒙古机电职业技术学院《集装箱与多式联运2》2023-2024学年第二学期期末试卷
- 湖南应用技术学院《土木工程预算》2023-2024学年第二学期期末试卷
- 郑州电子信息职业技术学院《商品学概论》2023-2024学年第一学期期末试卷
- 河源职业技术学院《新媒体综合实训》2023-2024学年第二学期期末试卷
- 吉林农业大学《岩土力学综合实验》2023-2024学年第二学期期末试卷
- 重庆海联职业技术学院《体育(一)》2023-2024学年第二学期期末试卷
- 辽宁省大连市中山区2024-2025学年初三第五次月考英语试题含答案
- 海口经济学院《媒介经营与管理业务》2023-2024学年第二学期期末试卷
- 西北民族大学《英语阅读(V)》2023-2024学年第一学期期末试卷
- 收费站防雷电安全知识
- 2025年中国药学会公开招聘工作人员3人历年高频重点提升(共500题)附带答案详解
- 机器学习(完整版课件)
- (八省联考)陕西省2025年高考综合改革适应性演练 生物试卷(含答案详解)
- DG-TJ 08-2336-2020 绿道建设技术标准
- AEO贸易安全培训
- 新建农副产品深加工项目立项申请报告
- 《简历制作培训》课件
- 国际金融学课件完整版
- 2024会计职业规划
- 肝硬化失代偿期
评论
0/150
提交评论