山东省莱西市2024年数学八年级下册期末学业水平测试模拟试题含解析_第1页
山东省莱西市2024年数学八年级下册期末学业水平测试模拟试题含解析_第2页
山东省莱西市2024年数学八年级下册期末学业水平测试模拟试题含解析_第3页
山东省莱西市2024年数学八年级下册期末学业水平测试模拟试题含解析_第4页
山东省莱西市2024年数学八年级下册期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省莱西市2024年数学八年级下册期末学业水平测试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.对一组数据:﹣2,1,2,1,下列说法不正确的是()A.平均数是1 B.众数是1 C.中位数是1 D.极差是42.下列各曲线中不能表示y是x函数的是()A. B. C. D.3.如图,字母M所代表的正方形的面积是()A.4 B.5 C.16 D.344.若一次函数不经过第三象限,则的取值范围为A. B.C. D.5.以下说法正确的是()A.在同一年出生的400人中至少有两人的生日相同B.一个游戏的中奖率是1%,买100张奖券,一定会中奖C.一副扑克牌中,随意抽取一张是红桃K,这是必然事件D.一个袋中装有3个红球、5个白球,任意摸出一个球是红球的概率是36.下列函数(1)y=πx;(2)y=2x-1;(3);(4)y=x2-1中,是一次函数的有()A.4个 B.3个 C.2个 D.1个7.(2016广西贵港市)式子在实数范围内有意义,则x的取值范围是()A.x<1 B.x≤1 C.x>1 D.x≥18.如图,▱ABCD的对角线AC、BD相交于点O,且AC+BD=16,CD=6,则△ABO的周长是()A.10 B.14 C.20 D.229.的计算结果是()A.3 B.9 C.6 D.210.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则①abc>0,②b2-4ac>0,③2a+b>0,④a+b+c<0,这四个式子中正确的个数有()A.4个 B.3个 C.2个 D.1个11.已知点,、,是直线上的两点,下列判断中正确的是()A. B. C.当时, D.当时,12.河堤横断面如图所示,斜坡AB的坡度=1:,BC=5米,则AC的长是()米.A. B.5 C.15 D.二、填空题(每题4分,共24分)13.菱形的两条对角线长分别为3和4,则菱形的面积是_____.14.已知x=2是关于x的一元二次方程kx2+(k2﹣2)x+2k+4=0的一个根,则k的值为_____.15.如图,O是矩形ABCD对角线AC的中点,M是AD的中点,若BC=8,OB=5,则OM的长为_____16.实数,在数轴上对应点的位置如图所示,化简的结果是__________.17.关于的方程无解,则的值为________.18.若甲、乙、丙、丁四个同学一学期4次数学测试的平均成绩恰好都是85分,方差分别为s甲2=0.80,s乙2=1.31,s丙2=1.72,s丁2=0.42,则成绩最稳定的同学是______.三、解答题(共78分)19.(8分)已知一次函数的图象经过点A,B两点.(1)求这个一次函数的解析式;(2)求一次函数的图像与两坐标轴所围成的三角形的面积.20.(8分)已知:△ABC的中线BD、CE交于点O,F、G分别是OB、OC的中点.求证:四边形DEFG是平行四边形.21.(8分)为积极响应“弘扬传统文化”的号召,万州区某中学举行了一次中学生诗词大赛活动.小何同学对他所在八年级一班参加诗词大赛活动同学的成绩进行了整理,成绩分别100分、90分、80分、70分,并绘制出如下的统计图.请根据以上提供的信息,解答下列问题:(1)该校八年级(1)班参加诗词大赛成绩的众数为______分;并补全条形统计图.(2)求该校八年级(1)班参加诗词大赛同学成绩的平均数;(3)结合平时成绩、期中成绩和班级预选成绩(如下表),年级拟从该班小何和小王的两位同学中选一名学生参加区级决赛,按的比例计算两位同学的最终得分,请你根据计算结果确定选谁参加区级决赛.学生姓名平时成绩期中成绩预选成绩小何8090100小王901009022.(10分)已知,,,求的值.23.(10分)如图,平行四边形ABCD中,点E、F分别是AD、BC的中点24.(10分)如图,菱形ABCD的对角线AC、BD相交于点O,BE∥AC,CE∥DB.求证:四边形OBEC是矩形.25.(12分)如图,将一张矩形纸片沿直线折叠,使点落在点处,点落在点处,直线交于点,交于点.(1)求证:;(2)若的面积与的面积比为,.①求的长.②求的长.26.甲骑自行年,乙乘坐汽车从A地出发沿同一路线匀速前往B地,甲先出发.设甲行驶的时间为x(h),甲、乙两人距出发点的路程S甲(km)、S乙(km)关于x的函数图象如图1所示,甲、乙两人之同的距离y(km)关于x的函数图象如图2所示,请你解决以下问题:(1)甲的速度是__________km/h,乙的速度是_______km/h;(2)a=_______,b=_______;(3)甲出发多少时间后,甲、乙两人第二次相距7.5km?

参考答案一、选择题(每题4分,共48分)1、A【解析】试题分析:A、这组数据的平均数是:(﹣2+1+2+1)÷4=,故原来的说法不正确;B、1出现了2次,出现的次数最多,则众数是1,故原来的说法正确;C、把这组数据从小到大排列为:﹣2,1,1,2,中位数是1,故原来的说法正确;D、极差是:2﹣(﹣2)=4,故原来的说法正确.故选A.考点:极差,算术平均数,中位数,众数.2、D【解析】

根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定答案.【详解】显然A、B、C选项中,对于自变量x的任何值,y都有唯一的值与之相对应,y是x的函数;D选项对于x取值时,y都有3个或2个值与之相对应,则y不是x的函数;故选D.【点睛】本题主要考察函数的定义,属于基础题,熟记函数的定义是解题的关键.3、C【解析】分析:根据勾股定理:直角三角形斜边的平方减直角边的平方等于另一直角边的平方,可得答案.详解:由勾股定理,得:M=25﹣9=1.故选C.点睛:本题考查了勾股定理,利用了勾股定理:两直角边的平方和等于斜边的平方.4、A【解析】

解:∵一次函数不经过第三象限,,解之得,.故选A.5、A【解析】A.一年有365天或366天,所以400人中一定有两人同一天出现,为必然事件.故正确B.买了100张奖券可能中奖且中奖的可能性很小,故错误C.一副扑克牌中,随意抽取一张是红桃K,这是不确定事件,故错误D.一个袋中装有3个红球、5个白球,任意摸出一个球是红球的概率是38故选A6、C【解析】一次函数解析式形如+b,据此可知(1)y=πx,(2)y=2x-1是一次函数,共有2个,故选C7、C【解析】依题意得:,解得x>1,故选C.8、B【解析】

直接利用平行四边形的性质得出AO=CO,BO=DO,DC=AB=6,再利用已知求出AO+BO的长,进而得出答案.【详解】∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,DC=AB=6,∵AC+BD=16,∴AO+BO=8,∴△ABO的周长是:1.故选B.【点睛】平行四边形的性质掌握要熟练,找到等值代换即可求解.9、A【解析】

求出的结果,即可选出答案.【详解】解:=3,故选:A.【点睛】本题考查了二次根式的性质的应用,注意:.10、A【解析】

由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,由对称轴判断b的大小,易判断①③;根据x=1时的函数值判断④;根据二次函数图象与x轴有两个交点可判断②,进而得出结论.【详解】解:由二次函数的图象开口向上可得a>0,

根据二次函数的图象与y轴交于负半轴知:c<0,

由对称轴为直线0<x<1可知->0,

易得b<0,∴abc>0,故①正确;

∵-<1,a>0,∴2a+b>0,故③正确;

∵二次函数图象与x轴有两个交点,∴△=b2-4ac>0,故②正确;

∵观察图象,当x=1时,函数值y=a+b+c<0,故④正确,

∴①②③④均正确,

故选:A.【点睛】本题考查二次函数图象与二次函数系数之间的关系,二次函数与方程之间的转换,根的判别式的熟练运用.会利用特殊值代入法求得特殊的式子,如:y=a+b+c然后根据图象判断其值.11、D【解析】

根据一次函数图象的增减性,结合一次函数图象上点的横坐标的大小关系,即可得到答案.【详解】解:一次函数上的点随的增大而减小,又点,、,是直线上的两点,若,则,故选:.【点睛】本题考查了一次函数图象上点的坐标特征,正确掌握一次函数图象的增减性是解题的关键.12、A【解析】

Rt△ABC中,已知坡比是坡面的铅直高度BC与水平宽度AC之比,通过解直角三角形即可求出水平宽度AC的长.【详解】解:Rt△ABC中,BC=5米,tanA=1:,∴tanA=,∴AC=BC÷tanA=5÷=米,故选:A.【点睛】此题主要考查学生对坡度坡角的掌握及三角函数的运用能力,解题的关键是熟练掌握坡度的定义,此题难度不大.二、填空题(每题4分,共24分)13、1【解析】

根据菱形的面积等于对角线乘积的一半列式进行计算即可得解.【详解】解:∵菱形的两条对角线长分别为3和4,∴菱形的面积=×3×4=1.故答案为:1.【点睛】本题考查了菱形的性质,菱形的面积通常有两种求法,可以用底乘以高,也可以用对角线乘积的一半求解,计算时要根据具体情况灵活运用.14、﹣1【解析】【分析】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,再解关于k的方程,然后根据一元二次方程的定义确定k的值即可.【详解】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,整理得k2+1k=0,解得k1=0,k2=﹣1,因为k≠0,所以k的值为﹣1.故答案为:﹣1.【点睛】本题考查了一元二次方程的定义以及一元二次方程的解,能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.15、3.【解析】

由直角三角形的性质得到AC=2OB=10,利用勾股定理求出AB=CD=6,再根据三角形的中位线得到OM的长度.【详解】∵四边形ABCD是矩形,∴∠ABC=∠D=90,AB=CD,∵O是矩形ABCD对角线AC的中点,OB=5,∴AC=2OB=10,∴CD=,∵O是AC的中点,M是AD的中点,∴OM是△ACD的中位线,∴OM=CD=3,故填:3.【点睛】此题考查矩形的性质,矩形的一条对角线将矩形分为两个全等的直角三角形,根据直角三角形斜边中线等于斜边的一半求得AC,根据勾股定理求出CD,在利用三角形的中位线求出OM.16、【解析】由图可知:a<0,a﹣b<0,则原式=﹣a﹣(a﹣b)=﹣2a+b=.故答案为.17、-1.【解析】

分式方程去分母转化为整式方程,由分式方程无解确定出x的值,代入整式方程计算即可求出m的值.【详解】解:去分母得:2x-1=x+1+m,

整理得:x=m+2,

当m+2=-1,即m=-1时,方程无解.

故答案为:-1.【点睛】本题考查分式方程的解,分式方程无解分为最简公分母为0的情况与分式方程转化为的整式方程无解的情况.18、丁【解析】

首先比较出S甲2、S乙2、S丙2、S丁2的大小关系,然后根据方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越,小,稳定性越好,判断出成绩最稳定的同学是谁即可.【详解】∵S甲2=0.80,S乙2=1.31,S丙2=1.72,S丁2=0.42,∴S丁2<S甲2<S乙2<S丙2,∴成绩最稳定的是丁,故答案为:丁.【点睛】此题主要考查了方差的含义和性质的应用,要熟练掌握,解答此题的关键是要明确:方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.三、解答题(共78分)19、(1);(2)4.【解析】

(1)先利用待定系数法确定一次函数的解析式是y=2x-4;(2)先确定直线y=2x-4与两坐标轴的交点坐标,然后根据三角形面积公式求解.【详解】解:(1)设这个一次函数的解析式为:y=kx+b(k≠0).将点A代入上式得:解得∴这个一次函数的解析式为:(2)∵∴当y=0时,2x-4=0,则x=2∴图象与x轴交于点C(2,0)∴【点睛】此题考查一次函数图象上点的坐标特征,待定系数法求一次函数解析式,解题关键在于把已知点代入解析式20、证明见解析.【解析】

利用三角形中线的性质、中位线的定义和性质证得四边形EFGD的对边DE∥GF,且DE=GF=BC;然后由平行四边形的判定--对边平行且相等的四边形是平行四边形,证得结论.【详解】证明:如图,连接ED、DG、GF、FE.∵BD、CE是△ABC的两条中线,∴点D、E分别是边AC、AB的中点,∴DE∥CB,DE=CB;又∵F、G分别是OB、OC的中点,∴GF∥CB,GF=CB;∴DE∥GF,且DE=GF,∴四边形DEFG是平行四边形(对边平行且相等的四边形是平行四边形).【点睛】考查了三角形中位线定理、平行四边形的判定.平行四边形的判定:两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;一组对边平行,一组对角相等的四边形是平行四边形.21、90,见解析;(2)86;(3)选小何参加区级决赛.【解析】

(1)根据条形图、扇形统计图中的数据可得出众数为90分,同时知道80分的人数为6人,即可补全条形图;(2)根据求平均数的方法计算平均数即可;(3)用加权平均数计算公式计算然后做比较即可.【详解】(1)90全条形统计图80分6人.(2).(3)小何得分:(分)小王得分:(分)∴选小何参加区级决赛.【点睛】本题考查了条形图、扇形统计图的制作特点、平均数、加权平均数的意义和求法,掌握平均数、加权平均数的计算方法是解答的关键.22、78.【解析】

原式提取公因式,再利用完全平方公式化简,将已知等式代入计算即可求出值.【详解】把,代入得:【点睛】此题考查了因式分解-提公因式法,熟练掌握因式分解的方法是解本题的关键.23、见解析【解析】

根据平行四边形的性质和已知可证AE=CF,∠BAE=∠DCF,AB=CD,故根据SAS可证△ABE≌△DCF.【详解】证明:∵四边形ABCD是平行四边形,∴AB=CD,∠A=∠C,AD=BC,∵点E、F分别是∴AE=12∴AE=CF,在△ABE和△CDF中,AB=CD∠A=∠C∴△ABE≌△CDFSAS【点睛】本题考查了平行四边形的判定和全等三角形的判定.掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.24、证明见解析.【解析】

根据平行四边形的判定推出四边形OBEC是平行四边形,根据菱形性质求出∠AOB=90°,根据矩形的判定推出即可.【详解】∵BE∥AC,CE∥DB,∴四边形OBEC是平行四边形,又∵四边形ABCD是菱形,且AC、BD是对角线,∴AC⊥BD,∴∠BOC=90°,∴平行四边形OBEC是矩形.【点睛】本题考查了菱形性质,平行四边形的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论