




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
青海省玉树市2024年八年级下册数学期末学业质量监测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.下列各曲线中,不能表示y是x的函数的是()A.B.C.D.2.已知a<b,则下列不等式一定成立的是()A.a+3>b+3 B.2a>2b C.﹣a<﹣b D.a﹣b<03.下列各组数据中能作为直角三角形的三边长的是()A.1,2,2 B.1,1, C.4,5,6 D.1,,24.要使分式有意义,x应满足的条件是()A. B. C. D.5.如图,从几何图形的角度看,下列这些图案既是中心对称图形又是轴对称图形的是()A. B. C. D.6.如图,在四边形ABCD中,对角线AC与BD相交于点O,已知AB∥DC,则添加下列结论中的一个条件后,仍不能判定四边形ABCD是平行四边形的是()A.AO=CO B.AC=BD C.AB=CD D.AD∥BC7.某天,小明走路去学校,开始他以较慢的速度匀速前进,然后他越走越快走了一段时间,最后他以较快的速度匀速前进达到学校.小明走路的速度v(米/分钟)是时间t(分钟)的函数,能正确反映这一函数关系的大致图像是()A. B.C. D.8.2022年将在北京﹣张家口举办冬季奥运会,很多学校开设了相关的课程.某校8名同学参加了冰壶选修课,他们被分成甲、乙两组进行训练,身高(单位:cm)如下表所示:队员1队员2队员3队员4甲组176177175176乙组178175177174设两队队员身高的平均数依次为x甲,x乙,方差依次为S甲2,S乙A.x甲=x乙,S甲2<S乙2 B.x甲=x乙,S甲2C.x甲<x乙,S甲2<S乙2 D.x甲>x乙,S甲29.点A,B,C,D都在如图所示的由正方形组成的网格图中,且线段CD与线段AB成位似图形,则位似中心为()A.点E B.点FC.点H D.点G10.下列选项中,可以用来证明命题“若a²>1,则a>1”是假命题的反例是()A.a=-2. B.a==-1 C.a=1 D.a=2二、填空题(每小题3分,共24分)11.在四边形ABCD中,AB=CD,请添加一个条件_____,使得四边形ABCD是平行四边形.12.如图,四边形ABCD是正方形,△EBC是等边三角形,则∠AED的度数为_________.13.在直角坐标系中,直线与轴交于点,以为边长作等边,过点作平行于轴,交直线于点,以为边长作等边,过点作平行于轴,交直线于点,以为边长作等边,…,则等边的边长是______.14.如图,在中,,,,过点作且点在点的右侧.点从点出发沿射线方向以/秒的速度运动,同时点从点出发沿射线方向以/秒的速度运动,在线段上取点,使得,设点的运动时间为秒.当__________秒时,以,,,为顶点的四边形是平行四边形.15.为了解当地气温变化情况,某研究小组记录了寒假期间连续6天的最高气温,结果如下(单位:℃):-6,-3,x,2,-1,3,若这组数据的中位数是-1,在下列结论中:①方差是8;②极差是9;③众数是-1;④平均数是-1,其中正确的序号是________.16.一个三角形的底边长为5,高为h可以任意伸缩.写出面积S随h变化的函数解析式_____.17.实数a,b在数轴上对应点的位置如图所示,化简|b|+=______.18.点D、E、F分别是△ABC三边的中点,若△ABC的周长是16,则△DEF的周长是_____.三、解答题(共66分)19.(10分)阅读理解:我们知道因式分解与整式乘法是互逆关系,那么逆用乘法公式,即,是否可以因式分解呢?当然可以,而且也很简单。如;.请你仿照上述方法分解因式:(1)(2)20.(6分)某文化用品商店用1000元购进一批“晨光”套尺,很快销售一空;商店又用1500元购进第二批该款套尺,购进时单价是第一批的倍,所购数量比第一批多100套.(1)求第一批套尺购进时单价是多少?(2)若商店以每套4元的价格将这两批套尺全部售出,可以盈利多少元?21.(6分)如图,在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度,(1)请在所给的网格内画出以线段AB、BC为边的菱形,并求点D的坐标;(2)求菱形ABCD的对角线AC的长.22.(8分)两个含有二次根式的代数式相乘,积不含有二次根式,称这两个代数式互为有理化因式,例如:与、与等都是互为有理化因式,在进行二次根式计算时,利用有理化因式,可以化去分母中的根号.例如:;;…….请仿照上述过程,化去下列各式分母中的根号.(1)(2)(n为正整数).23.(8分)我们知道定理“直角三角形斜边上的中线等于斜边的一半”,这个定理的逆命题也是真命题.(1)请你写出这个定理的逆命题是________;(2)下面我们来证明这个逆命题:如图,CD是△ABC的中线,CD=AB.求证:△ABC为直角三角形.请你写出证明过程.24.(8分)如图,将绕点A按逆时针方向旋转,使点B落在BC边上的点D处,得.若,,求的度数.25.(10分)如图,在平行四边形ABCD中,E,F为BC上两点,且BE=CF,AF=DE求证:(1)△ABF≌△DCE;(2)四边形ABCD是矩形.26.(10分)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端到地面距离为2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端到地面距离为2米,求小巷的宽度.
参考答案一、选择题(每小题3分,共30分)1、A【解析】试题分析:在坐标系中,对于x的取值范围内的任意一点,通过这点作x轴的垂线,则垂线与图形只有一个交点.根据定义即可判断.解:显然B、C、D三选项中,对于自变量x的任何值,y都有唯一的值与之相对应,y是x的函数;A选项对于x取值时,y都有3个或2个值与之相对应,则y不是x的函数;故选:A.2、D【解析】试题分析:在不等式的左右两边同时加上或减去同一个数,则不等式仍然成立;在不等式的左右两边同时乘以或除以一个正数,则不等式仍然成立;在不等式的左右两边同时乘以或除以一个负数,则不等符号需要改变.考点:不等式的性质3、D【解析】
根据勾股定理的逆定理对各选项进行逐一分析即可.【详解】解:A、∵12+22=5≠22,∴此组数据不能作为直角三角形的三边长,故本选项错误;B、∵12+12=2≠()2,∴此组数据不能作为直角三角形的三边长,故本选项错误;C、∵42+52=41≠62,∴此组数据不能作为直角三角形的三边长,故本选项错误;D、∵12+()2=4=22,∴此组数据能作为直角三角形的三边长,故本选项正确.故选D.【点睛】本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.4、D【解析】
直接利用分式有意义的条件,即分母不等于0,进而得出答案.【详解】解:要使分式有意义,x应满足的条件是:x-1≠0,
解得:x≠1.
故选:D.【点睛】本题考查分式有意义的条件,正确把握分式有意义的条件是解题关键.5、B【解析】
根据轴对称图形和中心对称图形的定义对各个选项一一判断即可得出答案.【详解】A.是轴对称图形,不是中心对称图形;B.既是轴对称图形,又是中心对称图形;C.是轴对称图形,不是中心对称图形;D.是轴对称图形,不是中心对称图形.故选B.【点睛】本题考查了中心对称图形和轴对称图形的识别.熟练应用中心对称图形和轴对称图形的概念进行判断是解题的关键.6、B【解析】
根据平行四边形的判定定理依次判断即可.【详解】∵AB∥CD,∴∠ABD=∠BDC,∠BAC=∠ACD,∵AO=CO,∴△ABO≌△CDO,∴AB=CD,∴四边形ABCD是平行四边形,故A正确,且C正确;∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,故D正确;由AC=BD无法证明四边形ABCD是平行四边形,且平行四边形的对角线不一定相等,∴B错误;故选:B.【点睛】此题考查了添加一个条件证明四边形是平行四边形,正确掌握平行四边形的判定定理并运用解题是关键.7、A【解析】
首先判断出函数的横、纵坐标所表示的意义,然后再根据题意进行解答.【详解】纵坐标表示的是速度、横坐标表示的是时间;由题意知:小明的走路去学校应分为三个阶段:①匀速前进的一段时间,此时的函数是平行于横坐标的一条线段,可排除C、D选项;②加速前进的一段时间,此时的函数是一段斜率大于0的一次函数;③最后匀速前进到达学校,此时的函数是平行于横坐标的一条线段,可排除B选项;故选A.【点睛】本题应首先看清横轴和纵轴表示的量,然后根据实际情况采用排除法求解.8、A【解析】
根据平均数及方差计算公式求出平均数及方差,然后可判断.【详解】解:x甲=(177+176+171+176)÷4=176x甲=(178+171+177+174)÷4=176s甲2=14[(177﹣176)2+(176﹣176)2+(171﹣176)2+(176﹣176)2]=0.1s乙2=14[(178﹣176)2+(171﹣176)2+(177﹣176)2+(174﹣176)2]=2.1s甲2<s乙2.故选:A.【点睛】本题考查了算术平均数和方差的计算,熟练掌握计算公式是解答本题的关键.算术平均数的计算公式是:x=a1+9、B【解析】
根据位似图形对应点连线过位似中心判断即可.【详解】解:点A、B、C、D都在如图所示的由正方形组成的网格图中,且线段CD与线段AB成位似图形,则位似中心为点F,
故选:B.【点睛】此题考查位似变换,解题关键是弄清位似中心的定义.10、A【解析】根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题:用来证明命题“若a2>2,则a>2”是假命题的反例可以是:a=-2.因为a=-2时,a2>2,但a<2.故选A二、填空题(每小题3分,共24分)11、AB//CD等【解析】
根据平行四边形的判定方法,结合已知条件即可解答.【详解】∵AB=CD,∴当AD=BC,(两组对边分别相等的四边形是平行四边形.)或AB∥CD(一组对边平行且相等的四边形是平行四边形.)时,四边形ABCD是平行四边形.故答案为AD=BC或者AB∥CD.【点睛】本题考查了平行四边形的判定,平行四边形的五种判定方法分别是:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.12、150【解析】
根据题意先得出AB=BC=BE,EC=BC=DC,并以此求出∠AEB和∠DEC,进而利用∠AED=360°-∠AEB-∠DEC-∠BEC即可求出∠AED的度数.【详解】解:∵四边形ABCD是正方形,△EBC是等边三角形,∴AB=BC=BE,EC=BC=DC,∠ABE=∠DCE=90°-60°=30°,∴∠AEB=∠EAB=(180°-30°)÷2=75°,∴∠DEC=∠EDC=(180°-30°)÷2=75°,∴∠AED=360°-∠AEB-∠DEC-∠BEC=360°-75°-75°-60°=150°.故答案为:150°.【点睛】本题考查正方形的性质以及等腰、等边三角形的性质,熟练掌握相关的性质是解题的关键.13、【解析】
先从特殊得到一般探究规律后,利用规律解决问题即可;【详解】∵直线l:y=x-与x轴交于点B1
∴B1(1,0),OB1=1,△OA1B1的边长为1;
∵直线y=x-与x轴的夹角为30°,∠A1B1O=60°,
∴∠A1B1B2=90°,
∵∠A1B2B1=30°,
∴A1B2=2A1B1=2,△A2B3A3的边长是2,
同法可得:A2B3=4,△A2B3A3的边长是22;
由此可得,△AnBn+1An+1的边长是2n,
∴△A2018B2019A2019的边长是1.
故答案为1.【点睛】考查了一次函数图象上点的坐标特征以及等边三角形的性质的运用,解决问题的关键是依据等边三角形的性质找出规律,求得△AnBn+1An+1的边长是2n.14、或14【解析】
根据点P所在的位置分类讨论,分别画出图形,利用平行四边形的对边相等列出方程,从而求出结论.【详解】解:①当点P在线段BE上时,∵AF∥BE∴当AD=BC时,此时四边形ABCD为平行四边形由题意可知:AD=x,PE=2x∵PC=2cm,∴CE=PE-PC=(2x-2)cm∴BC=BE-CE=(14-2x)cm∴x=14-2x解得:x=;②当点P在EB的延长线上时,∵AF∥BE∴当AD=CB时,此时四边形ACBD为平行四边形由题意可知:AD=x,PE=2x∵PC=2cm,∴CE=PE-PC=(2x-2)cm∴BC=CE-BE=(2x-14)cm∴x=2x-14解得:x=14;综上所述:当秒或14秒时,以,,,为顶点的四边形是平行四边形.故答案为:秒或14秒.【点睛】此题考查的是平行四边形的性质和动点问题,掌握平行四边形的对边相等和行程问题中的公式是解决此题的关键.15、②③④【解析】分析:分别计算该组数据的平均数,众数,方差后找到正确的答案即可.详解:∵﹣6,﹣3,x,2,﹣1,3的中位数是-1,∴分三种情况讨论:①若x≤-3,则中位数是(-1-3)÷2=-2,矛盾;②若x≥2,则中位数是(-1+2)÷2=0.5,矛盾;③若-3<x≤-1或-1≤x<2,则中位数是(-1+x)÷2=-1,解得:x=﹣1;平均数=(﹣6﹣3﹣1﹣1+2+3)÷6=﹣1.∵数据﹣1出现两次,出现的次数最多,∴众数为﹣1;方差=[(﹣6+1)2+(﹣3+1)2+(﹣1+1)2+(2+1)2+(﹣1+1)2+(3+1)2]=9,∴正确的序号是②③;故答案为②③.点睛:本题考查了方差、平均数、中位数及众数的知识,属于基础题,掌握各部分的定义及计算方法是解题的关键.16、【解析】
直接利用三角形面积求法得出函数关系式.【详解】解:∵一个三角形的底边长为5,高为h可以任意伸缩,∴面积S随h变化的函数解析式为:S=h•5=h.故答案为S=h.【点睛】此题主要考查了函数关系式,正确记忆三角形面积是解题关键.17、﹣a【解析】
根据各点在数轴上的位置判断出a、b的符号及绝对值的大小,再根据有理数的加法法则和二次根式的性质,把原式进行化简即可.【详解】解:由数轴可知a<0<b,且|a|>|b|,则a+b<0,∴原式=b+|a+b|=b﹣(a+b)=b﹣a﹣b=﹣a,故答案为﹣a.【点睛】本题考查的是实数与数轴,二次根式的性质,以及有理数的加法法则,熟知实数与数轴上各点是一一对应关系及绝对值性质是解答此题的关键.18、1.【解析】
据D、E、F分别是AB、AC、BC的中点,可以判断DF、FE、DE为三角形中位线,利用中位线定理求出DF、FE、DE与AB、BC、CA的长度关系即可解答.【详解】如图,∵D、E、F分别是AB、BC、AC的中点,∴ED、FE、DF为△ABC中位线,∴DFBC,FEAB,DEAC,∴DF+FE+DEBCABAC(AB+BC+CA)16=1.故答案为:1.【点睛】本题考查了三角形的中位线定理,根据中点判断出中位线,再利用中位线定理是解题的基本思路.三、解答题(共66分)19、①;②【解析】
(1)逆用乘法公式(x+a)
(x+b)=x2+(a+b)x+ab即可.(2)逆用乘法公式(x+a)
(x+b)=x2+(a+b)x+ab即可.【详解】(1)x2-7x-18=(x+2)(x-9);(2)x2+12xy-13y2=(x+13y)(x-y).【点睛】本题考查因式分解的应用,解题的关键是学会逆用乘法公式(x+a)
(x+b)=x2+(a+b)x+ab,进行因式分解,属于中考常考题型.20、(1)1(1)【解析】
(1)设第一批套尺购进时单价是x元/套,则设第二批套尺购进时单价是元/套,根据题意可得等量关系:第二批套尺数量﹣第一批套尺数量=100套,根据等量关系列出方程即可;(1)两批套尺得总数量×4﹣两批套尺的总进价=利润,代入数进行计算即可.【详解】(1)设第一批套尺购进时单价是x元/套.由题意得:,解得:x=1.经检验:x=1是所列方程的解.答:第一批套尺购进时单价是1元/套;(1)(元).答:商店可以盈利1900元.【点睛】分式方程的应用.21、(1)D(-2,1);(2)32【解析】
(1)根据菱形的四条边相等,可分别以点A,C为圆心,以AB长为半径画弧,两弧的交点即为点D的位置,根据所在象限和距坐标轴的距离得到点D的坐标即可;(2)利用勾股定理易得菱形的一条对角线AC的长即可.【详解】解:(1)如图,菱形ABCD为所求图形,D(-2,1);(2)AC=32+3【点睛】主要考查了菱形四条边相等的判定,及勾股定理的运用,熟练掌握菱形的性质及勾股定理是解答本题的关键.在直角三角形中,如果两条直角边分别为a和b,斜边为c,那么a2+b2=c2.也就是说,直角三角形两条直角边的平方和等于斜边的平方.22、(1);(2).【解析】
(1)与互为有理化因式,根据题意给出的方法,即可求出答案.(2)与互为有理化因式,根据题意给出的方法即可求出答案.【详解】解:(1)==(2)==【点睛】本题考查了分母有理化,能找出分母的有理化因式是解此题的关键.23、(1)如果一个三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形;(2)证明见解析.【解析】
(1)直接得出它的逆命题;(2)先判断出∠A=∠ACD,∠B=∠DCB,最后用三角形的内角和定理,即可求出∠A+∠B=90°,即可得出结论.【详解】解:(1)∵“直角三角形斜边上的中线等于斜边的一半”,∴它逆命题是:如果一个三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形,故答案为:如果一个三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形;(2)∵CD是△ABC的中线∴AD=BD=AB,∵CD=AB,∴AD=CD=BD∴∠A=∠ACD,∠B=∠DCB,在△ABC中,∠A+∠B+∠ACD+∠DCB=180°∴∠A+∠B+∠A+∠B=180°,∴∠A+∠B=90°,∴∠ACB=∠ACD+∠DCB=90°,∴△ABC为直角三角形.【点睛】主要考查了直角三角形的性质,等腰三角形的性质,根据命题得出逆命题是解本题的关键.24、20°【解析】
由旋转的性质可得∠AED=∠ACB=40°,∠BAD=∠DAE,AB=AD,AC=AE,又因为DE∥AB,所以∠BAD=∠ADE,列出方程求解可得出∠BAD=60°,所以∠ACE=∠AEC=60°,∠DEC=∠AEC-∠AED=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 学校特色课程介绍
- 重庆三峡学院《食品无损检测》2023-2024学年第二学期期末试卷
- 广东省湛江市2024-2025学年高三3月学生学业能力调研语文试题试卷含解析
- 人教PEP版英语五年级下册教学课件Unit 6 Part B 第一课时
- 云南省昆明市五华区红云小学2025年三年级数学第二学期期末学业质量监测试题含解析
- 河南财政金融学院《大学生学业职业规划》2023-2024学年第二学期期末试卷
- 济宁学院《仓储与库存管理》2023-2024学年第一学期期末试卷
- 江苏省苏州高新区一中2024-2025学年高三二诊考试生物试题试卷含解析
- 辽宁地质工程职业学院《统计机器学习及应用实践》2023-2024学年第二学期期末试卷
- 吉林省白山市抚松县六中2025年高三第二次教学质量监测英语试题试卷含解析
- 展览会议展前展中展后服务方案(技术方案)
- 2025年山东淄博高三一模高考数学试卷试题(含答案详解)
- 建筑垃圾处理工地安全事故应急预案
- 2025年湖北省恩施市司法局司法辅助人员招聘9人历年高频重点提升(共500题)附带答案详解
- 2024-2030年中国玄武岩纤维工业行业现状调研及投资战略研究报告
- 项目部组织机构和管理体系范文
- 自然辩证法论述题146题带答案(可打印版)
- 2024-2030年中国盐差能行业面临的困境分析及投资规模研究报告
- 七年级语文上册语文必背【古诗词与文言文】
- 小学生火星天问一号祝融车分享
- 全过程造价咨询项目保密及廉政执业措施
评论
0/150
提交评论