陇南市重点中学2024年八年级数学第二学期期末复习检测模拟试题含解析_第1页
陇南市重点中学2024年八年级数学第二学期期末复习检测模拟试题含解析_第2页
陇南市重点中学2024年八年级数学第二学期期末复习检测模拟试题含解析_第3页
陇南市重点中学2024年八年级数学第二学期期末复习检测模拟试题含解析_第4页
陇南市重点中学2024年八年级数学第二学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

陇南市重点中学2024年八年级数学第二学期期末复习检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.菱形的周长为20cm,两个相邻的内角的度数之比为1:2,则较长的对角线的长度是()A.cm B.cm C.cm D.5cm2.下列选择中,是直角三角形的三边长的是()A.1,2,3 B.,, C.3,4,6 D.4,5,63.某班位男同学所穿鞋子的尺码如下表所示,则鞋子尺码的众数和中位数分别是()尺码数人数A. B. C. D.4.如图,菱形ABCD中,∠B=60°,AB=2cm,E,F分别是BC,CD的中点,连接AE,EF,AF,则△AEFA.23cm B.3cm C.45.已知菱形的边长和一条对角线的长均为2cm,则菱形的面积为()A.3cm2 B.4cm2 C.3cm2 D.23cm26.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD7.如图,菱形ABCD的对角线AC,BD的长分别为6cm,8cm,则这个菱形的周长为()A.5cm B.10cm C.14cm D.20cm8.要使二次根式有意义,字母的取值范围是()A.x≥ B.x≤ C.x> D.x<9.下列计算正确的是()A. B. C. D.10.如图,▱ABCD的周长为36,对角线AC、BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长为()A.15 B.18 C.21 D.2411.如图,y1,y2分别表示燃油汽车和纯电动汽车行驶路程S(单位:千米)与所需费用y(单位:元)的关系,已知纯电动汽车每千米所需的费用比燃油汽车每千米所需费用少0.54元,设纯电动汽车每千米所需费用为x元,可列方程为()A. B.C. D.12.中国华为麒麟985处理器是采用7纳米制程工艺的手机芯片,在指甲盖大小的尺寸上塞进了120亿个晶体管,是世界上最先进的具有人工智能的手机处理器,将120亿个用科学记数法表示为()A.个 B.个 C.个 D.个二、填空题(每题4分,共24分)13.如图,矩形ABCD的对角线AC,BD的交点为O,点E为BC边的中点,,如果OE=2,那么对角线BD的长为______.14.已知x+y=﹣1,xy=3,则x2y+xy2=_____.15.如图,矩形ABCD的对角线AC和BD相交于点O,∠ADB=30°,AB=4,则OC=_____.16.如图是甲、乙两名跳远运动员的10次测验成绩(单位:米)的折线统计图,观察图形,写出甲、乙这10次跳远成绩之间的大小关系:S甲2_____S乙2(填“>“或“<”)17.m,n分别是的整数部分和小数部分,则2m-n=______.18.已知一次函数y=-2x+9的图象经过点(a,3)则a=_______.三、解答题(共78分)19.(8分)某公司招聘一名员工,现有甲、乙两人竞聘,公司聘请了3位专家和4位群众代表组成评审组,评审组对两人竟聘演讲进行现场打分,记分采用100分制,其得分如下表:评委(序号)1234567甲(得分)89949387959287乙(得分)87899195949689(1)甲、乙两位竞聘者得分的中位数分别是多少(2)计算甲、乙两位应聘者平均得分,从平均得分看应该录用谁(结果保留一位小数)(3)现知道1、2、3号评委为专家评委,4、5、6、7号评委为群众评委,如果对专家评委组与群众评委组的平均分数分别赋子适当的权,那么对专家评委组赋的权至少为多少时,甲的平均得分比乙的平均得分多0.5分及以上20.(8分)如图,在中,为的中点,,.动点从点出发,沿方向以的速度向点运动;同时动点从点出发,沿方向以的速度向点运动,运动时间是秒.(1)用含的代数式表示的长度.(2)在运动过程中,是否存在某一时刻,使点位于线段的垂直平分线上?若存在,求出的值;若不存在,请说明理由.(3)是否存在某一时刻,使?若存在,求出的值;若不存在,请说明理由.(4)是否存在某一时刻,使?若存在,求出的值;若不存在,请说明理由.21.(8分)解方程:(1)=;(2)-1=.22.(10分)某租赁公司拥有汽车100辆.据统计,每辆车的月租金为4000元时,可全部租出.每辆车的月租金每增加100元,未租出的车将增加1辆.租出的车每辆每月的维护费为500元,未租出的车每辆每月只需维护费100元.(1)当每辆车的月租金为4600元时,能租出多少辆?并计算此时租赁公司的月收益(租金收入扣除维护费)是多少万元?(2)规定每辆车月租金不能超过7200元,当每辆车的月租金定为多少元时,租赁公司的月收益(租金收入扣除维护费)可达到40.4万元?23.(10分)(1)因式分解:6x(2)解不等式组:x-3x-2≥4,24.(10分)如图,在△ABC中,AD是BC边上的中线,点E是AD的中点,过点A作AF//BC交BE的延长线于F,BF交AC于G,连接CF.(1)求证:△AEF≌△DEB;(2)若∠BAC=90∘,试判断四边形(3)求证:CG=2AG.25.(12分)材料:思考的同学小斌在解决连比等式问题:“已知正数,,满足,求的值”时,采用了引入参数法,将连比等式转化为了三个等式,再利用等式的基本性质求出参数的值.进而得出,,之间的关系,从而解决问题.过程如下:解;设,则有:,,,将以上三个等式相加,得.,,都为正数,,即,..仔细阅读上述材料,解决下面的问题:(1)若正数,,满足,求的值;(2)已知,,,互不相等,求证:.26.某县为了了解2018年初中毕业生毕业后的去向,对部分九年级学生进行了抽样调查,就九年级学生的四种去向(A.读普通高中;B.读职业高中;C.直接进入社会就业;D.其他)进行数据统计,并绘制了两幅不完整的统计图(如图①②)请问:(1)本次共调查了_名初中毕业生;(2)请计算出本次抽样调查中,读职业高中的人数和所占百分比,并将两幅统计图中不完整的部分补充完整;(3)若该县2018年九年级毕业生共有人,请估计该县今年九年级毕业生读职业高中的学生人数.

参考答案一、选择题(每题4分,共48分)1、B【解析】如图所示:∵菱形的周长为20cm,∴菱形的边长为5cm,∵两邻角之比为1:2,∴较小角为60°,∴∠ABO=30°,AB=5cm,∵最长边为BD,BO=AB⋅cos∠ABO=5×=(cm),∴BD=2BO=(cm).故选B.2、B【解析】

由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A、12+22≠32,故不能组成直角三角形;

B、()2+()2=()2,故能组成直角三角形;

C、32+42≠62,故不能组成直角三角形;

D、42+52≠62,故不能组成直角三角形.

故选:B.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.3、C【解析】

众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【详解】解:数据1出现了10次,次数最多,所以众数为1,

一共有20个数据,位置处于中间的数是:1,1,所以中位数是(1+1)÷2=1.

故选:C.【点睛】本题考查了确定一组数据的中位数和众数的能力.解题的关键是熟练掌握求中位数和众数的方法.4、D【解析】

首先根据菱形的性质证明△ABE≌△ADF,然后连接AC可推出△ABC以及△ACD为等边三角形.根据等边三角形三线合一的性质又可推出△AEF是等边三角形.根据勾股定理可求出AE的长,继而求出周长.【详解】解:∵四边形ABCD是菱形,∴AB=AD=BC=CD=2cm,∠B=∠D,∵E、F分别是BC、CD的中点,∴BE=DF,在△ABE和△ADF中,AB=AD∠B∴△ABE≌△ADF(SAS),∴AE=AF,∠BAE=∠DAF.连接AC,∵∠B=∠D=60°,∴△ABC与△ACD是等边三角形,∴AE⊥BC,AF⊥CD,∴∠BAE=∠DAF=30°,∴∠EAF=60°,BE=12AB=1cm∴△AEF是等边三角形,AE=AB2∴周长是33故选:D.【点睛】本题主要考查了菱形的性质、全等三角形的判定和性质、等边三角形的判定和性质以及勾股定理,涉及知识点较多,也考察了学生推理计算的能力.5、D【解析】

由四边形ABCD是菱形,可得菱形的四条边都相等AB=BC=CD=AD,菱形的对角线互相平分且相等即AC⊥BD,OA=OC,OB=OD,又因为菱形的边长和一条对角线的长均为2,易求得OB=1,则可得AC的值,根据菱形的面积等于积的一半,即可求得菱形的面积.【详解】解:根据题意画出图形,如图所示:

∵四边形ABCD是菱形,

∴AB=BC=CD=AD=2cm,AC⊥BD,OA=OC,OB=OD,

又∵菱形的边长和一条对角线的长均为2,

∴AB=AD=BD=2,

∴OB=1,

∴OA=AB2-BO2=3,

∴AC=23,

∴菱形的面积为2【点睛】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;菱形的面积等于对角线乘积的一半.6、D【解析】A.添加∠A=∠D可利用AAS判定△ABC≌△DCB,故此选项不合题意;B.添加AB=DC可利用SAS定理判定△ABC≌△DCB,故此选项不合题意;C.添加∠ACB=∠DBC可利用ASA定理判定△ABC≌△DCB,故此选项不合题意;D.添加AC=BD不能判定△ABC≌△DCB,故此选项符合题意.故选D.7、D【解析】

根据菱形的对角线互相垂直平分可得AC⊥BD,,,再利用勾股定理列式求出AB,然后根据菱形的四条边都相等列式计算即可得解.【详解】解:∵四边形ABCD是菱形,∴AC⊥BD,=3cm,根据勾股定理得,,所以,这个菱形的周长=4×5=20cm.故选:D.【点睛】本题考查了菱形的性质,勾股定理,主要利用了菱形的对角线互相垂直平分,需熟记.8、B【解析】

二次根式的被开方数应为非负数,列不等式求解.【详解】由题意得:1-2x≥0,解得x≤,故选B.【点睛】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.9、C【解析】

根据二次根式的加法法则判断A、B;根据二次根式的乘法法则判断C;根据二次根式的除法法则判断D.【详解】A、不是同类二次根式,不能合并,故本选项错误;B、不能合并,故本选项错误;C、故本选项正确;D、故本选项错误;故选:C.【点睛】本题考查了二次根式的运算,掌握运算法则是解题的关键.10、A【解析】

此题涉及的知识点是平行四边形的性质.根据平行四边形的对边相等和对角线互相平分可得,OB=OD,又因为E点是CD的中点,可得OE是△BCD的中位线,可得OE=BC,所以易求△DOE的周长.【详解】解:∵▱ABCD的周长为32,∴2(BC+CD)=32,则BC+CD=1.∵四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD=12,∴OD=OB=BD=2.又∵点E是CD的中点,DE=CD,∴OE是△BCD的中位线,∴OE=BC,∴△DOE的周长=OD+OE+DE=BD+(BC+CD)=2+9=3,即△DOE的周长为3.故选A【点睛】此题重点考察学生对于平行四边形的性质的理解,三角形的中位线,平行四边形的对角对边性质是解题的关键.11、C【解析】

设纯电动汽车每千米所需费用为x元,则燃油汽车每千米所需费用为(x+0.54)元,根据路程=总费用÷每千米所需费用结合路程相等,即可得出关于x的分式方程,此题得解.【详解】解:设纯电动汽车每千米所需费用为x元,则燃油汽车每千米所需费用为(x+0.54)元,根据题意得:.故选:C.【点睛】本题考查了由实际问题抽象出分式方程以及函数的图象,找准等量关系,正确列出分式方程是解题的关键.12、C【解析】

科学记数法的表示形式为的形式,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值时,n是正数;当原数的绝对值时,n是负数.【详解】120亿个用科学记数法可表示为:个.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,为整数,表示时关键要正确确定的值以及的值.二、填空题(每题4分,共24分)13、1【解析】

由30°角直角三角形的性质求得,然后根据矩形的两条对角线相等且平分来求的长度.【详解】解:在矩形中,对角线,的交点为,,,.又∵点为边的中点,,,,,,.故答案为:1.【点睛】本题主要考查对矩形的性质,三角形的中位线定理,能根据矩形的性质和30°角所对的直角边等于斜边的一半求出的长是解此题的关键.题型较好,难度适中.14、-1【解析】

直接利用提取公因式法分解因式,进而把已知数据代入求出答案.【详解】解:∵x+y=﹣1,xy=1,∴x2y+xy2=xy(x+y)=1×(﹣1)=﹣1.故答案为﹣1.【点睛】本题主要考查了提取公因式法分解因式,正确分解因式是解题的关键.15、1【解析】解:∵四边形ABCD是矩形,∴AC=BD,OA=OC,∠BAD=90°,∵∠ADB=30°,∴AC=BD=2AB=8,∴OC=AC=1.故答案为1.点睛:此题考查了矩形的性质、含30°角的直角三角形的性质.熟练掌握矩形的性质,注意掌握数形结合思想的应用.16、<【解析】

观察图形,根据甲、乙两名运动员成绩的离散程度的大小进行判断即可得..【详解】由图可得,甲这10次跳远成绩离散程度小,而乙这10次跳远成绩离散程度大,∴S甲2<S乙2,故答案为<.【点睛】本题考查了方差的运用,熟练运用离散程度的大小来确定方差的大小是解题的关键.17、【解析】

先估算出的大致范围,然后可求得-1的整数部分和小数部分,从而可得到m、n的值,最后代入计算即可.【详解】解:∵1<2<4,∴1<<2,∴0<-1<1.∴m=0,n=-1.∴2m-n=0-(-1)=1-.故答案为:【点睛】本题主要考查的是估算无理数的大小,求得的大致范围是解题的关键.18、3【解析】

将(a,3)代入一次函数解析式y=-2x+9进行计算即可得.【详解】把(a,3)代入一次函数解析式y=-2x+9,得3=-2a+9,解得:a=3,故答案为:3.【点睛】本题考查了一次函数图象上点的坐标特征,熟知一次函数图象上的点的坐标一定满足该函数的解析式是解题的关键.三、解答题(共78分)19、(1)甲得分中位数为:92(分),乙得分中位数为:91(分);(2)甲平均得分:91(分),乙平均得分:91.6(分),平均得分看应该录用乙;(3)专家评委组赋的权至少为0.6时,甲的平均得分比乙的平均得分多0.5分及以上.【解析】

(1)将甲、乙二人的成绩分别排序找出中间位置的一个数即可,(2)根据算术平均数的计算方法求平均数即可,(3)根据加权平均数的求法设出权数,列不等式解答即可.【详解】(1)甲得分:87878992939495,中位数为:92(分),乙得分:87898991949596,中位数为:91(分);(2)甲平均得分:甲=92+(-3+2+1-5+3+0-5)=91(分),乙平均得分:乙=92+(-5-3-1+3+2+4-3)≈91.6(分),从平均得分看应该录用乙;(3)设专家评委组赋的权至少为x时,甲的平均得分比乙的平均得分多0.5分及以上,(89+94+93)x+(87+95+92+87)(1-x)≥(87+89+91)x+(95+94+96+89)(1-x)即:276x+361-361x≥267x+374-374x解得:x≥≈0.6所以,专家评委组赋的权至少为0.6时,甲的平均得分比乙的平均得分多0.5分及以上。【点睛】考查中位数、算术平均数、加权平均数的意义及计算方法,理解权重对平均数的影响是解决问题的关键.20、(1)CP=8-3t;(2)见解析;(3)见解析;(4)见解析.【解析】

(1)直接利用即可求解;(2)根据线段垂直平分线的性质可得,列方程求解即可;(3)根据全等三角形的性质可得若,因为,,所以只需,列方程求出的值即可;(4)若,因为,所以需满足且,即且,没有符合条件的t的值,故不存在.【详解】解:(1);(2)若点位于线段的垂直平分线上,则,即,解得.所以存在,秒时点位于线段的垂直平分线上.(3)若,因为,,所以只需,即,解得,所以存在.(4)若,因为,所以需满足且,即且,所以不存在.【点睛】本题考查全等三角形的判定和性质及动点运动问题,对于运动型的问题,关键是用时间t表示出相应的线段的长度,能根据题意列方程求解.21、(1)x=2-2(2)无解【解析】

(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】(1)方程两边同时乘以x得:2=(+1)x,解得:x==2-2,检验:当x=2-2时,x≠0所以x=2-2是分式方程的解;(2)方程两边同时乘以得:x2+2x+1-x2+1=4,解得:x=1,检验:当x=1时,所以x=1是增根,分式方程无解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.22、(1)38.48万元;(2)月租金定为1元.【解析】

(1)由月租金比全部租出多4600-4000=600元,得出未租出6辆车,租出94辆车,进一步算得租赁公司的月收益即可;

(2)设上涨x个100元,根据租赁公司的月收益可达到40.4万元列出方程解答即可.【详解】(1)因为月租金4600元,未租出6辆车,租出94辆车;月收益:94×(4600﹣500)﹣6×100=384800(元),即38.48万元.(2)设上涨x个100元,由题意得(4000+100x﹣500)(100﹣x)﹣100x=404000.整理得:x2﹣64x+540=0解得:x1=54,x2=10,因为规定每辆车月租金不能超过7200元,所以取x=10,4000+10×100=1.答:月租金定为1元.【点睛】本题考查了一元二次方程的应用,解题的难点在于根据题意列出一元二次方程.23、(1)y(y+3x)2;(2)【解析】

(1)先提取y,再根据完全平方公式即可得到答案;(2)先分别求出不等式组中两个不等式的解,再将答案表示的数轴上.【详解】(1)因式分解:6xy=y(y=y(y+3x)(2)解不等式组:x-3(x-2)≥4解:解不等式①,得x≤1解不等式②,得x<4在同一数轴上表示不等式①②的解集,如图.∴原不等式组的解集为:x≤1【点睛】本题考查因式分解、解不等式组和数轴,解题的关键是掌握因式分解、解不等式组和数轴.24、(1)详见解析;(2)四边形ADCF是菱形,理由详见解析;(3)详见解析【解析】

(1)由“AAS”可证△AEF≌△DEB;(2)由全等三角形的性质可得AF=BD=CD,可证四边形ADCF是平行四边形,由直角三角形的性质可得AD=CD,可证四边形ADCF是菱形;(3)通过证明△AFG∽△CBG,可得AFBC【详解】证明:(1)∵AF//BC,∴∠AFE=∠DBE,在△AEF和△DEB中,∠AFE=∠DBE∴△AEF≌△DEB(AAS);(2)解:四边形ADCF是菱形,理由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论