2024年湖南省株洲荷塘区四校联考数学八年级下册期末联考试题含解析_第1页
2024年湖南省株洲荷塘区四校联考数学八年级下册期末联考试题含解析_第2页
2024年湖南省株洲荷塘区四校联考数学八年级下册期末联考试题含解析_第3页
2024年湖南省株洲荷塘区四校联考数学八年级下册期末联考试题含解析_第4页
2024年湖南省株洲荷塘区四校联考数学八年级下册期末联考试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年湖南省株洲荷塘区四校联考数学八年级下册期末联考试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.平移直线得到直线,正确的平移方式是()A.向上平移个单位长度 B.向下平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度2.计算的结果为()A. B.±5 C.-5 D.53.反比例函数经过点(1,),则的值为()A.3 B. C. D.4.小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图反映了这个过程中,小明离家的距离y与时间x之间的对应关系.根据图象,下列说法正确的是()A.小明吃早餐用了25minB.小明从图书馆回家的速度为0.8km/minC.食堂到图书馆的距离为0.8kmD.小明读报用了30min5.如图,菱形纸片ABCD,∠A=60°,P为AB中点,折叠菱形纸片ABCD,使点C落在DP所在的直线上,得到经过点D的折痕DE,则∠DEC等于()A.60° B.65° C.75° D.80°6.计算(5﹣﹣2)÷(﹣)的结果为()A.﹣5 B.5 C.7 D.﹣77.如图,已知菱形的两条对角线分别为6cm和8cm,则这个菱形的高DE为()A.2.4cm B.4.8cm C.5cm D.9.6cm8.关于特殊四边形对角线的性质,矩形具备而平行四边形不一定具备的是()A.对角线互相平分 B.对角线互相垂直C.对角线相等 D.对角线平分一组对角9.下列命题中,逆命题是真命题的是()A.直角三角形的两锐角互余B.对顶角相等C.若两直线垂直,则两直线有交点D.若x=1,则x2=110.下列命题是真命题的是()A.若,则B.若,则C.若是一个完全平方公式,则的值等于D.将点向上平移个单位长度后得到的点的坐标为11.下列各组线段a、b、c中不能组成直角三角形的是()A.a=8,b=15,c=17 B.a=7,b=24,c=25C.a=40,b=50,c=60 D.a=,b=4,c=512.如图,a∥b,点A在直线a上,点B,C在直线b上,AC⊥b,如果AB=5cm,BC=3cm,那么平行线a,b之间的距离为()A.5cm B.4cm C.3cm D.不能确定二、填空题(每题4分,共24分)13.已知菱形的边长为4,,如果点是菱形内一点,且,那么的长为___________.14.如图,正方形的对角线与相交于点,正方形绕点旋转,直线与直线相交于点,若,则的值是____.15.已知一个函数的图象与反比例函数的图象关于轴对称,则这个函数的表达式是__________.16.如图,矩形ABCD中,对角线AC、BD交于点O,E为OB中点,且AE⊥BD,BD=4,则CD=____________________.17.老师对甲、乙两人的五次数学测验成绩进行统计,得出两人五次测验成绩的平均分均为90分,方差分别是S甲2=17,S乙2=1.则成绩比较稳定的是(填“甲”、“乙”中的一个).18.某老师为了了解学生周末利用网络进行学习的时间,在所任教班级随机调查了10名学生,其统计数据如下表:时间(单位:小时)

4

3

2

1

0

人数

2

4

2

1

1

则这10名学生周末利用网络进行学均时间是小时.三、解答题(共78分)19.(8分)已知关于x的方程(a﹣1)x2+2x+a﹣1=1.(1)若该方程有一根为2,求a的值及方程的另一根;(2)当a为何值时,方程的根仅有唯一的值?求出此时a的值及方程的根.20.(8分)如图,在△ABC中,∠C=90°,AC=BC,AD是∠BAC的平分线,DE⊥AB于E,(1)若CD=1cm,求AC的长;(2)求证:AB=AC+CD.21.(8分)如图,正方形ABCD和正方形CEFC中,点D在CG上,BC=1,CE=3,H是AF的中点,EH与CF交于点O.(1)求证:HC=HF.(2)求HE的长.22.(10分)关于x的二次函数的图象与x轴交于点和点,与y轴交于点(1)求二次函数的解析式;(2)求二次函数的对称轴和顶点坐标.23.(10分)如图1.点D,E在△ABC的边BC上.连接AD.AE.①AB=AC:②AD=AE:③BD=CE.以此三个等式中的两个作为命题的题设,另一个作为命题的结论.构成三个命题:①②③;①③②,②③①.(1)以上三个命题是真命题的为(直接作答)__________________;(2)选择一个真命题进行证明(先写出所选命题.然后证明).24.(10分)如图,菱形的对角线和交于点,,,求和的长.25.(12分)如图,四边形ABCD为平行四边形,AD=a,BE∥AC,DE交AC的延长线于F点,交BE于E点.(1)求证:DF=FE;(2)若AC=2CF,∠ADC=60°,AC⊥DC,求BE的长.26.我国古代数学著作《九章算术》中的一个问题.原文是:今有池方一丈,葭生其中央,出水尺.引葭赴岸,适与岸齐问水深、葭长各几何译文大意是:如图,有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池边的中点,它的顶端恰好到达池边的水面.问水的深度与这根芦苇的长度分别是多少?

参考答案一、选择题(每题4分,共48分)1、A【解析】

根据“上加下减”法则进行判断即可.【详解】将直线向上平移个单位长度得到直线,故选:A.【点睛】本题主要考查了函数图像平移的性质,熟练掌握相关平移特点是解题关键.2、D【解析】

根据二次根式的性质进行化简即可判断.【详解】解:=1.故选:D.【点睛】本题考查了二次根式的化简,关键是理解以下几点:①定义:一般地,形如(a≥0)的代数式叫做二次根式.当a>0时,表示a的算术平方根;当a=0时,=0;当a<0时,②性质:=|a|.3、B【解析】

此题只需将点的坐标代入反比例函数解析式即可确定k的值.【详解】把已知点的坐标代入解析式可得,k=1×(-1)=-1.故选:B.【点睛】本题主要考查了用待定系数法求反比例函数的解析式,.4、D【解析】

根据函数图象判断即可.【详解】小明吃早餐用了(25-8)=17min,A错误;小明从图书馆回家的速度为0.8÷10=0.08km/min,B错误;

食堂到图书馆的距离为(0.8-0.6)=0.2km,C错误;

小明读报用了(58-28)=30min,D正确;

故选:D【点睛】本题考查的是函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合题意正确计算是解题的关键.5、C【解析】

连接BD,由菱形的性质及∠A=60°,得到三角形ABD为等边三角形,P为AB的中点,利用三线合一得到DP为角平分线,得到∠ADP=30°,∠ADC=120°,∠C=60°,进而求出∠PDC=90°,由折叠的性质得到∠CDE=∠PDE=45°,利用三角形的内角和定理即可求出所求角的度数.【详解】连接BD,∵四边形ABCD为菱形,∠A=60°,∴△ABD为等边三角形,∠ADC=120°,∠C=60°,∵P为AB的中点,∴DP为∠ADB的平分线,即∠ADP=∠BDP=30°,∴∠PDC=90°,∴由折叠的性质得到∠CDE=∠PDE=45°,在△DEC中,∠DEC=180°-(∠CDE+∠C)=75°.故选:C.【点睛】此题考查了翻折变换(折叠问题),菱形的性质,等边三角形的性质,以及内角和定理,熟练掌握折叠的性质是解本题的关键.6、C【解析】

先把二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算.【详解】解:原式=(﹣2﹣6)÷(﹣)=﹣1÷(﹣)=1.故选:C.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.7、B【解析】

解:如图所示:∵四边形ABCD是菱形,∴OA=AC=4,OB=BD=3,AC⊥BD,∴AB=,∵菱形ABCD的面积=AB•DE=AC•BD=×8×6=24,∴DE==4.8;故选B.8、C【解析】

由矩形的对角线性质和平行四边形的对角线性质即可得出结论.【详解】解:矩形的对角线互相平分且相等,平行四边形的对角线互相平分,但不一定相等,∴矩形具备而平行四边形不一定具备的是对角线相等.故选C.【点睛】本题考查了矩形的性质、平行四边形的性质;熟记矩形和平行四边形的性质是解题的关键.9、A【解析】试题分析:交换原命题的题设与结论得到四个命题的逆命题,然后分别利用直角三角形的判定、对顶角的定义、两直线垂直的定义和平方根的定义对四个逆命题的真假进行判断.解:A、逆命题为有两角互余的三角形为直角三角形,此逆命题为真命题,所以A选项正确;B、逆命题为相等的角为对顶角,此逆命题为假命题,所以B选项错误;C、逆命题为两直线有交点,则两直线垂直,此逆命题为假命题,所以C选项错误;D、逆命题为若x2=1,则x=1,此逆命题为假命题,所以D选项错误.故选A.10、B【解析】

分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】、若,则,是假命题;、若,则,是真命题;、若是一个完全平方公式,则的值等于,是假命题;、将点向上平移3个单位后得到的点的坐标为,是假命题.故选:.【点睛】本题主要考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,判断命题的真假关键是要熟悉掌握相关定理.11、C【解析】

这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【详解】解:、因为,所以能组成直角三角形;、因为,所以能组成直角三角形;、因为,所以不能组成直角三角形;、因为,所以能组成直角三角形.故选:C.【点睛】本题考查勾股定理的逆定理的应用,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.12、B【解析】

从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离,并由勾股定理可得出答案.【详解】解:∵AC⊥b,∴△ABC是直角三角形,∵AB=5cm,BC=3cm,∴AC===4(cm),∴平行线a、b之间的距离是:AC=4cm.故选:B.【点睛】本题考查了平行线之间的距离,以及勾股定理,关键是掌握平行线之间距离的定义,以及勾股定理的运用.二、填空题(每题4分,共24分)13、1或3【解析】

数形结合,画出菱形,根据菱形的性质及勾股定理即可确定BP的值【详解】解:连接AC和BD交于一点O,四边形ABCD为菱形垂直平分AC,点P在线段AC的垂直平分线上,即BD上在直角三角形APO中,由勾股定理得如下图所示,当点P在BO之间时,BP=BO-PO=2-1=1;如下图所示,当点P在DO之间时,BP=BO+PO=2+1=3故答案为:1或3【点睛】本题主要考查了菱形的性质及勾股定理,熟练应用菱形的性质及勾股定理求线段长度是解题的关键.14、【解析】

如图,设EF交AB于M,EH交BC于N,PF交EH于O,作PT⊥AD于T交BC于R.首先证明∠CPB=90°,求出DT,PT即可解决问题.【详解】解:如图,设EF交AB于M,EH交BC于N,PF交EH于O,作PT⊥AD于T交BC于R.∵四边形ABCD是正方形,∴AC⊥BD,AE=EB,∠EAM=∠EBN=45°,∵四边形EFGH是正方形,∴∠MEN=∠AEB=90°,∴∠AEM=∠BEN,∴△AEM≌△BEN(ASA),∴AM=BN,EM=EN,∠AME=∠BNE,∵AB=BC,EF=EH,∴FM=NH,BM=CN,∵∠FMB=∠AME,∠CNH=∠BNE,∴∠FMB=∠CNH,∴△FMB≌△HNC(SAS),∴∠MFB=∠NHC,∵∠EFO+∠EOF=90°,∠EOF=∠POH,∴∠POH+∠PHO=90°,∴∠OPH=∠BPC=90°,∵∠DBP=75°,∠DBC=45°,∴∠CBP=30°,∵BC=AB=2,∴PB=BC•cos30°=,PR=PB=,RC=PR•tan30°=,∵∠RTD=∠TDC=∠DCR=90°,∴四边形TDCR是矩形,∴TD=CR=,TR=CD=AB=2,在Rt△PDT中,PD2=DT2+PT2=,故答案为.【点睛】本题考查全等三角形的判定和性质,旋转变换,正方形的性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.15、【解析】

直接根据平面直角坐标系中,关于y轴对称的特点得出答案.【详解】解:∵反比例函数的图象关于y轴对称的函数x互为相反数,y不变,∴,故答案为:.【点睛】本题考查反比例函数与几何变换,掌握关于y轴对称时,y不变,x互为相反数是解题关键.16、2【解析】分析:由于AE即是三角形ABO的中线也是高,得到三角形ABO是等腰三角形,所以AB=AO,再根据矩形的性质即可求出答案.详解:∵E为OB中点,且AE⊥BD,∴AB=AO,∵四边形ABCD为矩形,∴CD=AB=AO=BO=BD=2.点睛:本题考查了等腰三角形的判定和矩形的性质,解题的难点在于判定三角形ABO是等腰三角形.17、乙.【解析】试题解析:∵S甲2=17,S乙2=1,1<17,∴成绩比较稳定的是乙.考点:方差.18、2.5小时【解析】

平均数的计算方法是求出所有数据的和,然后除以数据的总个数.本题利用加权平均数的公式即可求解.【详解】解:由题意,可得这10名学生周末利用网络进行学均时间是:(4×2+3×4+2×2+1×1+0×1)=2.5(小时).故答案为2.5三、解答题(共78分)19、(3)a=,方程的另一根为;(2)答案见解析.【解析】

(3)把x=2代入方程,求出a的值,再把a代入原方程,进一步解方程即可;(2)分两种情况探讨:①当a=3时,为一元一次方程;②当a≠3时,利用b2-4ac=3求出a的值,再代入解方程即可.【详解】(3)将x=2代入方程,得,解得:a=.将a=代入原方程得,解得:x3=,x2=2.∴a=,方程的另一根为;(2)①当a=3时,方程为2x=3,解得:x=3.②当a≠3时,由b2-4ac=3得4-4(a-3)2=3,解得:a=2或3.当a=2时,原方程为:x2+2x+3=3,解得:x3=x2=-3;当a=3时,原方程为:-x2+2x-3=3,解得:x3=x2=3.综上所述,当a=3,3,2时,方程仅有一个根,分别为3,3,-3.考点:3.一元二次方程根的判别式;2.解一元二次方程;3.分类思想的应用.20、(1);(2)证明见解析.【解析】

(1)根据角平分线上的点到两边的距离相等可得DE=CD=1cm,再判断出△BDE为等腰直角三角形,然后求出BD,再根据AC=BC=CD+BD求解即可;(2)利用“HL”证明△ACD与△AED全等,根据全等三角形对应边相等可得AC=AE,再根据AB=AE+BE整理即可得证.【详解】(1)解:∵AD是△ABC的角平分线,∠C=90°,DE⊥AB,∴DE=CD=1cm,又∵AC=BC,∠C=90°,∴∠B=∠BAC=45°,∴△BDE为等腰直角三角形.∴BD=DE=cm,∴AC=BC=CD+BD=(1+)cm.(2)证明:在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴AC=AE,∵△BDE为等腰直角三角形,∴BE=DE=CD,∵AB=AE+BE,∴AB=AC+CD.【点睛】本题考查了角平分线的性质,全等三角形的判定与性质,等腰直角三角形的判定与性质.熟记各性质是解题的关键.21、(1)见解析;(2)HE=22【解析】

(1)利用直角三角形斜边上的中线等于斜边的一半求解即可;(2)分别求得HO和OE的长后即可求得HE的长.【详解】(1)证明:∵AC、CF分别是正方形ABCD和正方形CGFE的对角线,∴∠ACD=∠GCF=45°,∴∠ACF=90°,又∵H是AF的中点,∴CH=HF;(2)∵CH=HF,EC=EF,∴点H和点E都在线段CF的中垂线上,∴HE是CF的中垂线,∴点H和点O是线段AF和CF的中点,∴OH=12AC在Rt△ACD和Rt△CEF中,AD=DC=1,CE=EF=3,∴AC=2,∴CF=32,又OE是等腰直角△CEF斜边上的高,∴OE=32∴HE=HO+OE=22;【点睛】本题考查了正方形的性质,直角三角形斜边上的中线,三角形中位线,垂直平分线,勾股定理,解题的关键是根据题干与图形中角和边的关系,找到解决问题的条件.22、(1)(2)对称轴:直线;顶点坐标为.【解析】

(1)设抛物线的解析式为y=a(x+1)(x-1),将C(0,1)代入求得a的值可得到抛物线的解析式;(2)把抛物线的解析式配方即可【详解】解:(1)设抛物线的解析式为y=a(x+1)(x-1),

将C(0,1)代入得:1=-1a,解得a=-1,

∴抛物线的解析式为y=-x2+2x+1.(2)y=-x2+2x+1=-.∴对称轴:直线;顶点坐标为.【点睛】本题考查了待定系数法确定二次函数的解析式以及对称轴和顶点坐标,熟练掌握相关知

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论