版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届黑龙江省海伦市数学八年级下册期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.若一次函数y=kx+b的图象经过一、二、四象限,则一次函数y=-bx+k的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.如图,四边形ABCD的对角线AC和BD交于点O,则下列不能判断四边形ABCD是平行四边形的条件是()A.OA=OC,AD∥BC B.∠ABC=∠ADC,AD∥BCC.AB=DC,AD=BC D.∠ABD=∠ADB,∠BAO=∠DCO3.△ABC中,若AC=4,BC=2,AB=2,则下列判断正确的是()A.∠A=60° B.∠B=45° C.∠C=90° D.∠A=30°4.在中,,,高,则三角形的周长是()A.42 B.32 C.42或32 D.37或335.二次根式有意义的条件是()A.x>3 B.x>-3 C.x≥3 D.x≥-36.一组数据4,5,7,7,8,6的中位数和众数分别是()A.7,7 B.7,6.5 C.6.5,7 D.5.5,77.如图,在中,,的垂直平分线交于点,交于点,连接,,,,添加一个条件,无法判定四边形为正方形的是()A. B. C. D.8.下列图案中,既是轴对称图形又是中心对称图形的是()A. B. C. D.9.如图,已知数轴上点表示的数为,点表示的数为1,过点作直线垂直于,在上取点,使,以点为圆心,以为半径作弧,弧与数轴的交点所表示的数为()A. B. C. D.10.已知图中所有的小正方形都全等,若在右图中再添加一个全等的小正方形得到新的图形,使新图形是中心对称图形,则正确的添加方案是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,在正方形ABCD中,延长BC至E,使CE=CA,则∠E的度数是_____.12.分式与的最简公分母是__________.13.将一元二次方程通过配方转化成的形式(,为常数),则=_________,=_________.14.平行四边形的面积等于,两对角线的交点为,过点的直线分别交平行四边形一组对边、于点、,则四边形的面积等于________。15.如图,是等腰直角三角形内一点,是斜边,将绕点按逆时针方向旋转到的位置.如果,那么的长是____.16.若干桶方便面摆放在桌子上.实物图片左边所给的是它的三视图.则这一堆方便面共有桶.17.若O是四边形ABCD的对角线AC和BD的交点,且OB=OD,AC=14cm,则当OA=_____cm时,四边形ABCD是平行四边形.18.如图,已知正方形的边长为,则图中阴影部分的面积为__________.三、解答题(共66分)19.(10分)(12分)“世界那么大,我想去看看”一句话红遍网络,骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场,顺风车行经营的A型车2015年6月份销售总额为3.2万元,今年经过改造升级后A型车每辆销售价比去年增加400元,若今年6月份与去年6月份卖出的A型车数量相同,则今年6月份A型车销售总额将比去年6月份销售总额增加25%.(1)求今年6月份A型车每辆销售价多少元?(用列方程的方法解答)(2)该车行计划7月份新进一批A型车和B型车共50辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?A、B两种型号车的进货和销售价格如下表:A型车B型车进货价格(元/辆)11001400销售价格(元/辆)今年的销售价格240020.(6分)计算:(2018+2018)(-)21.(6分)如图,在中,于点D,E是的中点,若,求的长.22.(8分)是否存在整数k,使方程组的解中,x大于1,y不大于1,若存在,求出k的值,若不存在,说明理由.23.(8分)小强想利用树影测树高,他在某一时刻测得直立的标杆长0.8m,其影长为1m,同时测树影时因树靠近某建筑物,影子不全落在地上,有一部分落在墙上如图,若此时树在地面上的影长为5.5m,在墙上的影长为1.5m,求树高24.(8分)对于实数a,b,定义运算“*”,a*b=例如4*1.因为4>1,所以4*1=41-4×1=8,若x1、x1是一元二次方程x1-9x+10=0的两个根,则x1*x1=__.25.(10分)如果关于x的方程1+=的解,也是不等式组的解,求m的取值范围.26.(10分)在某校组织的初中数学应用能力竞赛中,每班参加比赛的人数相同,成绩分为A、B、C、D四个等级,其中相应等级的得分依次记为100分、90分、80分、70分,学校将八年级的一班和二班的成绩整理并绘制成如下的统计图,二班D级共有4人.请你根据以上提供的信息解答下列问题:(1)求此竞赛中一班共有多少人参加比赛,并补全条形统计图.(2)扇形统计图中A级对应的圆心角度数是.(3)此次竞赛中二班在C级以上(包括C级)的人数为.(4)请你将表格补充完成:
参考答案一、选择题(每小题3分,共30分)1、A【解析】
根据一次函数y=kx+b图象在坐标平面内的位置关系先确定k,b的取值范围,再根据k,b的取值范围确定一次函数y=-bx+k图象在坐标平面内的位置关系,从而求解.【详解】解:一次函数y=kx+b过一、二、四象限,则函数值y随x的增大而减小,因而k<1;图象与y轴的正半轴相交则b>1,因而一次函数y=-bx+k的一次项系数-b<1,y随x的增大而减小,经过二四象限,常数项k<1,则函数与y轴负半轴相交,因而一定经过二三四象限,因而函数不经过第一象限.故选:A.【点睛】本题考查了一次函数的图象与系数的关系.函数值y随x的增大而减小⇔k<1;函数值y随x的增大而增大⇔k>1;
一次函数y=kx+b图象与y轴的正半轴相交⇔b>1,一次函数y=kx+b图象与y轴的负半轴相交⇔b<1,一次函数y=kx+b图象过原点⇔b=1.2、D【解析】A选项:∵AD∥BC,
∴∠ADB=∠CBD,
在△BOC和△DOA中,∴△BOC≌△DOA(AAS),
∴BO=DO,
∴四边形ABCD是平行四边形,正确,故本选项错误;
B选项:∵∠ABC=∠ADC,AD∥BC,
∴∠ADC+∠DCB=180°,
∴∠ABC+∠BCD=180°,
∴AB∥DC,
∴四边形ABCD是平行四边形,正确,故本选项错误;
C选项:∵AB=CD,AD=BC,
∴四边形ABCD是平行四边形,正确,故本选项错误;
D选项:由∠ABD=∠ADB,∠BAO=∠DCO,
无法得出四边形ABCD是平行四边形,错误,故本选项正确;故选D.【点睛】平行四边形的判定有:①两组对边分别相等的四边形是平行四边形,②两组对边分别平行的四边形是平行四边形③两组对角分别相等的四边形是平行四边形④对角线互相平分的四边形是平行四边形,⑤有一组对边平行且相等的四边形是平行四边形.3、A【解析】
先利用勾股定理的逆定理得出∠B=90°,再利用三角函数求出∠A、∠C即可.【详解】∵△ABC中,AC=4,BC=2,AB=2,∴=2+,即=+,∴△ABC是直角三角形,且∠B=90°,∵AC=2AB,∴∠C=30°,∴∠A=90°-∠C=60°.故选:A.【点睛】本题考查了勾股定理的逆定理、含30度角的直角三角形的性质,如果三角形的三边长满足,那么这个三角形就是直角三角形.求出∠B=90°是解题的关键.4、C【解析】
在Rt△ABD中,利用勾股定理可求出BD的长度,在Rt△ACD中,利用勾股定理可求出CD的长度,由BC=BD+CD或BC=BD-CD可求出BC的长度,再将三角形三边长度相加即可得出△ABC的周长.【详解】在Rt△ABD中,,在Rt△ACD中,,∴BC=BD+CD=14或BC=BD-CD=4,
∴C△ABC=AB+BC+AC=15+14+13=42或C△ABC=AB+BC+AC=15+4+13=1.
故选:C.【点睛】本题考查了勾股定理以及三角形的周长,利用勾股定理结合图形求出BC边的长度是解题的关键.在解本题时应分两种情况进行讨论,以防遗漏.5、D【解析】
根据二次根式被开方数大于等于0即可得出答案.【详解】根据被开方数大于等于0得,有意义的条件是解得:故选:D【点睛】本题主要考查二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键.6、C【解析】
根据中位数与众数的概念和求解方法进行求解即可.【详解】将数据从小到大排列:4、5、6、7、7、8,所以中位数为=6.5,众数是7,故选C.【点睛】本题考查了中位数和众数,熟练掌握相关定义以及求解方法是解题的关键.①给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.任何一组数据,都一定存在中位数的,但中位数不一定是这组数据里的数.②给定一组数据,出现次数最多的那个数,称为这组数据的众数.7、D【解析】
根据中垂线的性质:中垂线上的点到线段两个端点的距离相等,有BE=EC,BF=FC进而得出四边形BECF是菱形;由菱形的性质知,以及菱形与正方形的关系,进而分别分析得出即可.【详解】解:∵EF垂直平分BC,
∴BE=EC,BF=CF,
∵BF=BE,
∴BE=EC=CF=BF,
∴四边形BECF是菱形;
当BC=AC时,
∵∠ACB=90°,
则∠A=45°时,菱形BECF是正方形.
∵∠A=45°,∠ACB=90°,
∴∠EBC=45°
∴∠EBF=2∠EBC=2×45°=90°
∴菱形BECF是正方形.
故选项A正确,但不符合题意;
当CF⊥BF时,利用正方形的判定得出,菱形BECF是正方形,故选项B正确,但不符合题意;
当BD=DF时,BC=EF,对角线相等的菱形是正方形,得菱形BECF是正方形,故选项C正确,但不符合题意;
当AC=BF时,AC=BF=CE,∠A=∠CEA=∠FBA,由菱形的对角线平分对角和直角三角形的两锐角互余得:∠ABC=30°,即∠FBE=60°,所以无法得出菱形BECF是正方形,故选项D错误,符合题意.
故选D.【点睛】本题考查菱形的判定和性质及中垂线的性质、直角三角形的性质、正方形的判定等知识,熟练掌握正方形的判定是解题关键.8、B【解析】
根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故此选项错误;
B、是轴对称图形,也是中心对称图形,故此选项正确;
C、不是轴对称图形,是中心对称图形,故此选项错误;
D、不是轴对称图形,是中心对称图形,故此选项错误.
故选B.【点睛】考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.9、B【解析】
由数轴上点表示的数为,点表示的数为1,得PA=2,根据勾股定理得,进而即可得到答案.【详解】∵数轴上点表示的数为,点表示的数为1,∴PA=2,又∵l⊥PA,,∴,∵PB=PC=,∴数轴上点所表示的数为:.故选B.【点睛】本题主要考查数轴上点表示的数与勾股定理,掌握数轴上两点之间的距离求法,是解题的关键.10、B【解析】
观察图形,利用中心对称图形的性质解答即可.【详解】选项A,新图形不是中心对称图形,故此选项错误;选项B,新图形是中心对称图形,故此选项正确;选项C,新图形不是中心对称图形,故此选项错误;选项D,新图形不是中心对称图形,故此选项错误;故选B.【点睛】本题考查了中心对称图形的概念,熟知中心对称图形的概念是解决问题的关键.二、填空题(每小题3分,共24分)11、22.5°【解析】
根据正方形的性质就有∠ACD=∠ACB=45°=∠CAE+∠AEC,根据CE=AC就可以求出∠CAE=∠E=22.5°.【详解】解:∵四边形ABCD是正方形,∴∠ACD=∠ACB=45°.∵∠ACB=∠CAE+∠AEC,∴∠CAE+∠AEC=45°.∵CE=AC,∴∠CAE=∠E=22.5°.故答案为22.5°【点睛】本题考查了正方形的性质的运用,等腰三角形的性质的运用,三角形的外角与内角的关系的运用及三角形内角和定理的运用.12、【解析】
先把分母分解因式,再根据最简公分母定义即可求出.【详解】解:第一个分母可化为(x-1)(x+1)
第二个分母可化为x(x+1)
∴最简公分母是x(x-1)(x+1).故答案为:x(x-1)(x+1)【点睛】此题的关键是利用最简公分母的定义:取各分母系数的最小公倍数与字母因式的最高次幂的积作最简公分母.13、43【解析】
依据配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方求解可得.【详解】,,则,即,,.故答案为:(1);(2).【点睛】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.14、【解析】
根据“过平行四边形对角线的交点的直线将平行四边形等分为两部分”解答即可.【详解】如图平行四边形ABCD,∵四边形ABCD是平行四边形,∴OD=OB,OA=OC,则可得:△DF0≌△BEO,△ADO≌△CBO,△CF0≌△AEO,∴直线l将四边形ABCD的面积平分.∵平行四边形ABCD的面积等于10cm2,∴四边形AEFD的面积等于5cm2,故答案为:5cm2【点睛】本题考查了中心对称,全等三角形的判定与性质,解答本题的关键在于举例说明,利用全等的知识解决.15、【解析】
证明△ADD′是等腰直角三角形即可解决问题.【详解】解:由旋转可知:△ABD≌△ACD′,∴∠BAD=∠CAD′,AD=AD′=2,∴∠BAC=∠DAD′=90°,即△ADD′是等腰直角三角形,∴DD′=,故答案为:.【点睛】本题考查旋转的性质,等腰直角三角形的判定和性质,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16、1【解析】从俯视图中可以看出最底层方便面的个数及摆放的形状,从主视图可以看出每一层方便面的层数和个数,从左视图可看出每一行方便面的层数和个数,从而算出总的个数.所以三摞方便面是桶数之和为:3+1+2=1.17、1【解析】
根据OB=OD,当OA=OC时,四边形ABCD是平行四边形,即可得出答案.【详解】由题意得:当OA=1时,OC=14﹣1=1=OA,∵OB=OD,∴四边形ABCD是平行四边形,故答案为:1.【点睛】本题考查平行四边形的判定,解题关键是熟练掌握平行四边形的判定定理:对角线互相平分的四边形是平行四边形,难度一般.18、2【解析】
正方形为轴对称图形,一条对称轴为其对角线所在的直线;由图形条件可以看出阴影部分的面积为正方形面积的一半.【详解】解:依题意有S阴影=×4×4=2cm1.
故答案为:2.【点睛】本题考查轴对称的性质以及正方形的性质,运用割补法是解题的关键.三、解答题(共66分)19、(1)2000;(2)A型车17辆,B型车33辆【解析】试题分析:(1)设去年A型车每辆x元,那么今年每辆(x+400)元,列出方程即可解决问题.(2)设今年7月份进A型车m辆,则B型车(50﹣m)辆,获得的总利润为y元,先求出m的范围,构建一次函数,利用函数性质解决问题.试题解析:(1)设去年A型车每辆x元,那么今年每辆(x+400)元,根据题意得,解之得x=1600,经检验,x=1600是方程的解.答:今年A型车每辆2000元.(2)设今年7月份进A型车m辆,则B型车(50﹣m)辆,获得的总利润为y元,根据题意得50﹣m≤2m解之得m≥,∵y=(2000﹣1100)m+(2400﹣1400)(50﹣m)=﹣100m+50000,∴y随m的增大而减小,∴当m=17时,可以获得最大利润.答:进货方案是A型车17辆,B型车33辆.考点:(1)一次函数的应用;(2)分式方程20、2018.【解析】分析:先提公因式2018,再用平方差公式计算即可.详解:原式=2018(+)(-)=2018[()2-()2]=2018点睛:此题考查了实数的混合运算,提取公因式后利用平方差公式进行简便计算是解决此题的关键.21、DE=2.5.【解析】
利用勾股定理列式求出AC,再根据直角三角形斜边上的中线等于斜边的一半解答.【详解】∵,∴,∵E是的中点,∴.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,熟记性质是解题的关键.22、存在;k只能取3,4,5【解析】
解此题时可以解出二元一次方程组中x,y关于k的式子,然后解出k的范围,即可知道k的取值.【详解】解:解方程组得∵x大于1,y不大于1从而得不等式组解之得2<k≤5又∵k为整数∴k只能取3,4,5答:当k为3,4,5时,方程组的解中,x大于1,y不大于1.【点睛】此题考查的是二元一次方程组和不等式的性质,要注意的是x>1,y≤1,则解出x,y关于k的式子,最终求出k的范围,即可知道整数k的值.23、解:设从墙上的影子的顶端到树的顶端的垂直高度是x米.则有0.8/1=x/5.5解得x=1.1.∴树高是1.1+1.5=5.9(米),【解析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.本题中:经过树在教学楼上的影子的顶端作树的垂线和经过树顶的太阳光线以及树所成三角形,与竹竿,影子光线形成的三角形相似,这样就可求出垂足到树的顶端的高度,再加上墙上的影高就是树高.24、4【解析】试题分析:先求出方程的两个根,再利用新定义的运算法则计算,计算时需要分类讨论.试题解析:x1-7x+11=0,(x-4)(x-3)=0,x-4=0或x-3=0,∴x1=4,x1=3或x1=3,x1=4.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 委托办理供电委托书模板
- 电梯机房管理制
- 租工地做停车场合同(2篇)
- 资产收购合同书范本(2篇)
- 天净沙课件 秋思
- 嫘祖养蚕 课件
- 《蜗牛的花园》少儿美术教育绘画课件创意教程教案
- 西南林业大学《插花艺术》2022-2023学年第一学期期末试卷
- 西京学院《商务谈判》2021-2022学年第一学期期末试卷
- 西京学院《课程与教学论》2022-2023学年第一学期期末试卷
- 高职专业人才培养方案-会计专业人才培养方案
- 趸船总体建造方案 投标方案(技术方案)
- 《美容营养学》课件-第八章 第一节 美胸丰胸概述
- 储蓄管理条例培训课件
- 名爵汽车MG5说明书
- 《发现潜藏的逻辑谬误》教学实录 2022-2023学年统编版高中语文选择性必修上册
- 安徽省皖豫联盟2023-2024学年高二上学期期中英语试题(原卷版)
- 老年护理与人文关怀
- 政务号短视频运营方案案例解析
- 《开学第一课:一年级新生入学班会》课件
- 高二期中考试家长会课件
评论
0/150
提交评论