版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
6.2.2排列数第六章计数原理2024/4/13高二数学备课组6.2排列与组合引
入1.排列的定义:一般地,从n个不同元素中取出m(m≤n)个元素,并按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列(arrangement).把问题中被取的对象叫做元素.2.排列问题的判断方法:(1)元素的无重复性
(2)元素的有序性判断的关键:变换元素的位置,看结果是否发生变化,有变化是有序,无变化就是无序.问题2
从6个不同的元素中,任取3个,按一定的顺序排成一列,有多少不同的排法?探究新知问题1从6个不同的元素中,任取2个,按一定的顺序排成一列,有多少不同的排法?N=6×5=30N=6×5×4=120问题3
从6个不同的元素中,任取4个,按一定的顺序排成一列,有多少不同的排法?N=6×5×4×3=360问题4
从n个不同的元素中,任取m个,按一定的顺序排成一列,有多少不同的排法?
(m≤n)第1位第2位第3位第m位排列数公式分析:N=n(n-1)(n-2)(n-m+1)分析:分析:分析:……探究新知我们把从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号表示.排列的第一个字母元素总数取出元素数m,n所满足的条件是:(1)
m∈N*,n∈N*
;(2)
m≤n.例如,前面问题1是从6个不同元素中任取2个元素的排列为6×5=30,可记作:
问题2是从6个不同元素中任取3个元素的排列数为6×5×4=120,可记作:符号中的A是英文arrangement(排列)的第一个字母1.排列数的定义:探究新知问题5
从甲、乙、丙3名同学中选出2名参加一项活动,其中1名同学参加上午的活动,另1名同学参加下午的活动,有几种不同的选法?问题6
从1,2,3,4这4个数中,每次取出3个排成一个三位数,共可得到多少个不同的三位数?如:从4个不同的元素a,b,c,d中任取2个元素的排列有
ab、ac、ad、ba、bc、bd、ca、cb、cd、da、db、dc,每一个叫一个排列;
共12个,12叫做从4个不同元素任取2个元素的排列数.问题7
排列与排列数相同吗?“一个排列”是一种排法,不是数;“排列数”是不同排列的个数是,一个自然数.探究新知问题8从n个不同元素中取出m个元素的排列数(m≤n)是多少?我们先从特殊情况开始探究,思考从n个不同元素中任取2个元素的排列数是多少?排列数可以按依次填2个空位得到:排列数可以按依次填3个空位得到:那么排列数就可以按依次填m个空位得到:
···?例如:探究新知2.排列数的计算:排列数公式的特点:①.公式中是m个连续正整数的连乘积;②.连乘积中最大因数为n,后面依次减1,最小因数是(n-m+1).(2)全排列数:①.全排列:从n个不同素中取出n个元素的一个排列称为n个不同元素的一个全排列.②全排列数为:(1)排列数公式(1):③阶乘:正整数1到n的连乘积1×2×···×n称为n的阶乘,用
表示,即探究新知解:例1计算:课堂练习1.从4种蔬菜品种中选出3种,分别种植在不同土质的3块土地上进行试验,有
种不同的种植方法?3.信号兵用3种不同颜色的旗子各一面,每次打出3面,最多能打出不同的信号有()2.从参加乒乓球团体比赛的5名运动员中选出3名进行某场比赛,并排定他们的出场顺序,有
种不同的方法?C课堂练习4.1565.12解:
6.计算:探究新知
问题9由此可以看到,观察这两个结果,从中你发现它们的共性了吗?证明:(3)排列数公式(2):
排列数公式的阶乘形式:例题讲解例2
证明:证明:课堂练习2.求证:证明:(5)排列数公式的应用:
①连乘形式一般用于的计算,阶乘形式用于化简或证明.具体应用时注意阶乘的性质,提取公因式,可以简化计算.例题讲解例3
解方程:例4求
的值.13744(5)排列数公式的应用:
①连乘形式一般用于的计算,阶乘形式用于化简或证明.②对于m≤n这个条件要留意,往往是解方程时的隐含条件.课堂练习B课堂练习B课堂练习探究新知课堂练习课堂练习课堂练习
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 初级会计实务-《初级会计实务》模考试卷954
- 基于干扰噪声协方差矩阵重构的稳健波束形成算法研究
- 安全防范与电信诈骗应对
- 现代农业产业园发展与建设综合方案
- 科创孵化器项目商业计划书
- 光伏组件回收产业未来机遇与发展报告
- 文化传媒行业编导培训总结
- 2025版高端石材工程采购及售后服务合同协议3篇
- 二零二五年度个人汽车维修贷款合同范本4篇
- 二零二五年度公益广告宣传海报设计与制作合同3篇
- 苏北四市(徐州、宿迁、淮安、连云港)2025届高三第一次调研考试(一模)英语试卷(含答案)
- 《酸碱罐区设计规范》编制说明
- 2025年信息系统集成服务公司组织架构和业务流程
- 西藏自治区拉萨市城关区多校2024-2025学年六年级上学期期中英语试题
- 桥梁监测监控实施方案
- 公安法制培训
- 《钢铁是怎样练成的》阅读任务单及答案
- 勾股定理的历史与证明课件
- 浅谈如何有效提高小学数学教学质量课件
- 新教材青岛版三年级下册科学全册教学课件
- 风力发电项目报价清单 (风机基础等)
评论
0/150
提交评论