




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河南省郑州市郑州一八联合国际学校八年级数学第二学期期末联考试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.下列调查中,适合进行普查的是()A.一个班级学生的体重B.我国中学生喜欢上数学课的人数C.一批灯泡的使用寿命D.《新闻联播》电视栏目的收视率2.在一次编程比赛中,8位评委给参赛选手小李的打分如下:9.0,9.0,9.1,10.0,9.0,9.1,9.0,9.1.规定去掉一个最高分和一个最低分后的平均值做为选手的最后得分.小李的最后得分是()A.9.0 B.9.1 C.9.1 D.9.33.为了解某校八年级900名学生每天做家庭作业所用的时间,随机抽取其中120名学生进行抽样调查下列说法正确的是()A.该校八年级全体学生是总体 B.从中抽取的120名学生是个体C.每个八年级学生是总体的一个样本 D.样本容量是1204.化简的结果是()A.2 B. C. D.5.下列各式成立的是()A. B.=3C. D.=36.如图,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买5千克这种苹果比分五次购买1千克这种苹果可节省()元.A.4 B.5 C.6 D.77.如图,将半径为的圆折叠后,圆弧恰好经过圆心,则折痕的长为()A.4cm B.2cm C.cm D.cm8.某景点的参观人数逐年增加,据统计,2015年为10.8万人次,2017年为16.8万人次.设参观人次的平均年增长率为x,则()A.10.8(1+x)=16.8 B.16.8(1﹣x)=10.8C.10.8(1+x)2=16.8 D.10.8[(1+x)+(1+x)2]=16.89.在中,若是的正比例函数,则值为A.1 B. C. D.无法确定10.某商品经过连续两次降价,销售单价由原来的125元降到80元,则两次降价的平均百分率为()A.10% B.15% C.20% D.25%二、填空题(每小题3分,共24分)11.分解因式b2(x﹣3)+b(x﹣3)=_____.12.如图,菱形ABCD中,对角线AC、BD相交于点O,且AC=24,BD=10,若点E是BC边的中点,则OE的长是_____.13.在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、3、4,则原直角三角形纸片的斜边长是.14.将直线y=2x-3平移,使之经过点(1,4),则平移后的直线是____.15.工人师傅给一幅长为,宽为的矩形书法作品装裱,作品的四周需要留白如图所示,已知左、右留白部分的宽度一样,上、下留白部分的宽度也一样,而且左侧留白部分的宽度是上面留白部分的宽度的2倍,使得装裱后整个挂图的面积为.设上面留白部分的宽度为,可列得方程为________。16.甲、乙两地相距200千米,汽车从甲地匀速行驶到乙地,汽车行驶时间关于行驶速度的函数表达式是_____.17.已知,则=_____.18.如图所示,在△ABC中,∠B=90°,AB=3,AC=5,线段AC的垂直平分线DE交AC于D交BC于E,则△ABE的周长为_____.三、解答题(共66分)19.(10分)先化简,再求值,其中.20.(6分)某校学生会调查了八年级部分学生对“垃圾分类”的了解程度(1)在确定调查方式时,学生会设计了以下三种方案,其中最具有代表性的方案是________;方案一:调查八年级部分男生;方案二:调查八年级部分女生;方案三:到八年级每个班去随机调查一定数量的学生.(2)学生会采用最具有代表性的方案进行调查后,将收集到的数据绘制成如下两幅不完整的统计图,如图①、图②.请你根据图中信息,回答下列问题:①本次调查学生人数共有_______名;②补全图①中的条形统计图,图②中了解一点的圆心角度数为_______;③根据本次调查,估计该校八年级500名学生中,比较了解“垃圾分类”的学生大约有_______名.21.(6分)如图,在平面直角坐标系中,直线过点且与轴交于点,把点向左平移2个单位,再向上平移4个单位,得到点.过点且与平行的直线交轴于点.(1)求直线CD的解析式;(2)直线AB与CD交于点E,将直线CD沿EB方向平移,平移到经过点B的位置结束,求直线CD在平移过程中与x轴交点的横坐标的取值范围.22.(8分)如图,已知,直线y=2x+3与直线y=-2x-1,求ΔABC的面积.23.(8分)已知:如图,在中,。(1)尺规作图:作线段的垂直平分线交于点,垂足为点,连接;(保留作图痕迹,不写作法);(2)求证:是等腰三角形。24.(8分)问题:将边长为n(n≥2)的正三角形的三条边分别n等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律.探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图①,连接边长为2的正三角形三条边的中点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,共有1+3=2边长为2的正三角形一共有1个.探究二:将边长为3的正三角形的三条边分别三等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图②,连接边长为3的正三角形三条边的对应三等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,共有1+3+5=32=9探究三:将边长为4的正三角形的三条边分别四等分(图③),连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)结论:将边长为n(n≥2)的正三角形的三条边分别n等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)应用:将一个边长为25的正三角形的三条边分别25等分,连接各边对应的等分点,则该三角形中边长为1的正三角形有______个和边长为2的正三角形有______个.25.(10分)某校开展“爱我汕头,创文同行”的活动,倡议学生利用双休日参加义务劳动,为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制了不完整的统计图,根据图中信息解答下列问题:(1)抽查的学生劳动时间为1.5小时”的人数为人,并将条形统计图补充完整.(2)抽查的学生劳动时间的众数为小时,中位数为小时.(3)已知全校学生人数为1200人,请你估算该校学生参加义务劳动1小时的有多少人?26.(10分)解分式方程:.
参考答案一、选择题(每小题3分,共30分)1、A【解析】
根据具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查即可解答本题.【详解】A、调查一个班级学生的体重,人数较少,容易调查,因而适合普查,故选项正确;B、调查我国中学生喜欢上数学课的人数,因为人数太多,不容易调查,因而适合抽查,故选项错误;C、调查一批灯泡的使用寿命,调查具有普坏性,因而适合抽查,故选项错误;D、调查结果不是很重要,且要普查要用大量的人力、物力,因而不适合普查,应用抽查,故选项错误.故选A.【点睛】本题考查抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选择,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2、B【解析】
先去掉这8个数据中的最大数和最小数,再计算剩余6个数据的平均数即可.【详解】解:题目中8个数据的最高分是10.0分,最低分是9.0分,则小李的最后得分=(9.0+9.1+9.0+9.1+9.0+9.1)÷6=9.1分.故选:B.【点睛】本题考查的是平均数的计算,正确理解题意、熟知平均数的计算方法是解题关键.3、D【解析】
总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:A.该校八年级全体学生每天做家庭作业所用的时间是总体,故A不符合题意;B.每个学生每天做家庭作业所用的时间是个体,故B不符合题意;C.从中抽取的120名学生每天做家庭作业所用的时间是一个样本,故C不符合题意;D.样本容量是120,故D符合题意;故选:D.【点睛】考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.4、D【解析】
直接利用二次根式的性质化简求出答案.【详解】解:.
故选:D.【点睛】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.5、D【解析】分析:各项分别计算得到结果,即可做出判断.详解:A.原式=,不符合题意;B.原式不能合并,不符合题意;C.原式=,不符合题意;D.原式=|﹣3|=3,符合题意.故选D.点睛:本题考查了二次根式的加减法,以及二次根式的性质与化简,熟练掌握运算法则是解答本题的关键.6、C【解析】
观察函数图象找出点的坐标,利用待定系数法求出线段OA和设AB的函数关系式,再分别求出当x=1和x=5时,y值,用10×5-44即可求出一次购买5千克这种苹果比分五次购买1千克这种苹果节省的钱数.【详解】解:设y关于x的函数关系式为y=kx+b,当0≤x≤2时,将(0,0)、(2,20)代入y=kx+b中,,解得:,∴y=10x(0≤x≤2);当x>2时,将(2,20),(4,36)代入y=kx+b中,,解得:,∴y=8x+4(x≥2).当x=1时,y=10x=10,当x=5时,y=44,10×5-44=6(元),故选C.【点睛】本题考查了一次函数的应用、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,观察函数图象找出点的坐标,利用待定系数法求出线段OA和设AB的函数关系式是解题的关键.7、A【解析】
连接AO,过O作OD⊥AB,交于点D,交弦AB与点E,根据折叠的性质及垂径定理得到AE=BE,再根据勾股定理即可求解.【详解】如图所示,连接AO,过O作OD⊥AB,交于点D,交弦AB与点E,∵折叠后恰好经过圆心,∴OE=DE,∵半径为4,∴OE=2,∵OD⊥AB,∴AE=AB,在Rt△AOE中,AE==2∴AB=2AE=4故选A.【点睛】此题主要考查垂径定理,解题的关键是熟知垂径定理的应用.8、C【解析】试题分析:设参观人次的平均年增长率为x,根据题意可得等量关系:10.8万人次×(1+增长率)2=16.8万人次,根据等量关系列出方程10.8(1+x)2=16.8,故选C.考点:由实际问题抽象出一元二次方程9、A【解析】
先根据正比例函数的定义列出关于的方程组,求出的值即可.【详解】函数是正比例函数,,解得,故选.【点睛】本题考查的是正比例函数的定义,正确把握“形如的函数叫正比例函数”是解题的关键.10、C【解析】
根据商品的原来的价格(1-每次降价的百分数)2=现在的价格,设出未知数,列方程求解即可.【详解】解:设这种商品平均每次降价的百分率为x根据题意列方程得:解得(舍)故选C.【点睛】本题主要考查一元二次方程的应用,关键在于根据题意列方程.二、填空题(每小题3分,共24分)11、b(x﹣3)(b+1)【解析】
用提公因式法分解即可.【详解】原式=b(x﹣3)·b+b(x﹣3)=b(x﹣3)(b+1).故答案为:b(x﹣3)(b+1)【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法.因式分解必须分解到每个因式都不能再分解为止.12、6.1.【解析】
根据菱形的性质:对角线互相垂直,利用勾股定理求出BC,再利用直角三角形斜边的中线的性质OE=BC,即可求出OE的长.【详解】∵四边形ABCD是菱形,∴AC⊥BD,OA=AC=12,OD=BD=1,在Rt△BOC中,BC==13,∵点E是BC边的中点,∴OE=BC=6.1,故答案为:6.1.【点睛】此题主要考查了菱形的性质、勾股定理的运用以及直角三角形斜边上的中线等于斜边的一半等知识,得出EO=BC是解题关键.13、2或10.【解析】试题分析:先根据题意画出图形,再根据勾股定理求出斜边上的中线,最后即可求出斜边的长.试题解析:①如图:因为CD=,点D是斜边AB的中点,所以AB=2CD=2,②如图:因为CE=点E是斜边AB的中点,所以AB=2CE=10,综上所述,原直角三角形纸片的斜边长是2或10.考点:1.勾股定理;2.直角三角形斜边上的中线;3.直角梯形.14、y=2x+2【解析】【分析】先由平移推出x的系数是2,可设直线解析式是y=2x+k,把点(1,4)代入可得.【详解】由已知可设直线解析式是y=2x+k,因为,直线经过点(1,4),所以,4=2+k所以,k=2所以,y=2x+2故答案为y=2x+2【点睛】本题考核知识点:一次函数性质.解题关键点:熟记一次函数性质.15、(120+4x)(40+2x)=1【解析】
设上面留白部分的宽度为xcm,则左右空白部分为2x,根据题意得出方程,计算即可求出答案.【详解】设上面留白部分的宽度为xcm,则左右空白部分为2x,可列得方程为:(120+4x)(40+2x)=1.故答案为:(120+4x)(40+2x)=1.【点睛】此题考查由实际问题抽象出一元二次方程,正确表示出变化后的长与宽是解题关键.16、【解析】
根据实际意义,写出函数的解析式即可.【详解】解:根据题意有:;故与之间的函数图解析式为,故答案为:.【点睛】本题考查了反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.17、-【解析】∵,∴可设:,∴.故答案为.18、1【解析】
根据勾股定理求出BC,根据线段垂直平分线得出AE=CE,求出△ABE的周长=AB+BC,代入求出即可.【详解】解:在△ABC中,∠B=90°,AB=3,AC=5,由勾股定理得:BC=4,∵线段AC的垂直平分线DE,∴AE=EC,∴△ABE的周长为AB+BE+AE=AB+BE+CE=AB+BC=3+4=1,故答案为1.【点睛】本题主要考查了线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是本题的关键.三、解答题(共66分)19、x;2019.【解析】
直接将括号里面通分运算,再利用分式的混合运算法则化简得出答案.【详解】原式,当时,原式.【点睛】此题主要考查了分式的化简求值,正确化简分式是解题关键.20、(1)方案三;(2)①120;②216;③150.【解析】
(1)由于学生总数比较多,采用抽样调查方式,方案一、方案二只涉及到男生和女生一个方面,过于片面,所以应选方案三;(2)①由不了解的人数和所占的比例可得出调查总人数;②先求出了解一点的人数和所占比例,再用360°乘以这个比例可得圆心角度数;③用八年级学生人数乘以比较了解“垃圾分类”的学生比例可得答案。【详解】解:(1)方案一、方案二只涉及到男生和女生一个方面,过于片面,所以应选方案三;(2)①不了解的有12人,占10%,所以本次调查学生人数共有12÷10%=120名;②了解一点的人数是120-12-36=72人,所占比例为,所以了解一点的圆心角度数为360°×60%=216°,补全的图形如下图故答案为:216;③500×=150名故答案为:150【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.21、(1)y=3x-10;(2)【解析】
(1)先把A(6,m)代入y=-x+4得A(6,-2),再利用点的平移规律得到C(4,2),接着利用两直线平移的问题设CD的解析式为y=3x+b,然后把C点坐标代入求出b即可得到直线CD的解析式;(2)先确定B(0,4),再求出直线CD与x轴的交点坐标为(,0);易得CD平移到经过点B时的直线解析式为y=3x+4,然后求出直线y=3x+4与x轴的交点坐标,从而可得到直线CD在平移过程中与x轴交点的横坐标的取值范围.【详解】解:(1)把A(6,m)代入y=-x+4得m=-6+4=-2,则A(6,-2),∵点A向左平移2个单位,再向上平移4个单位,得到点C,∴C(4,2),∵过点C且与y=3x平行的直线交y轴于点D,∴CD的解析式可设为y=3x+b,把C(4,2)代入得12+b=2,解得b=-10,∴直线CD的解析式为y=3x-10;(2)当x=0时,y=4,则B(0,4),当y=0时,3x-10=0,解得x=,则直线CD与x轴的交点坐标为(,0),易得CD平移到经过点B时的直线解析式为y=3x+4,当y=0时,3x+4=0,解得x=,则直线y=3x+4与x轴的交点坐标为(,0),∴直线CD在平移过程中与x轴交点的横坐标的取值范围为.【点睛】本题考查了一次函数与几何变换:求直线平移后的解析式时要注意平移时k的值不变,会利用待定系数法求一次函数解析式.22、2【解析】
将直线y=2x+3与直线y=−2x−1组成方程组,求出方程组的解即为C点坐标,再求出A、B的坐标,得到AB的长,即可求出△ABC的面积.【详解】解:将直线y=2x+3与直线y=-2x-1联立成方程组得:解得,即C点坐标为(-1,1).∵直线y=2x+3与y轴的交点坐标为(0,3),直线y=-2x-1与y轴的交点坐标为(0,-1),∴AB=4,∴.【点睛】本题考查了两条直线相交的问题,熟知函数图象上点的坐标特征是解题的关键.23、(1)见解析;(2)是等腰三角形,见解析.【解析】
(1)根据垂直平分线的作法作出AB的垂直平分线交BC于点D,垂足为F,再连接AD即可求解;
(2)根据等腰三角形的性质和线段垂直平分线的性质得到∠1=∠C=∠B=36°,再根据三角形内角和定理和三角形外角的性质得到∠DAC=∠ADC,再根据等腰三角形的判定即可求解.【详解】解:(1)如图,作出的垂直平分线,连接,(2)∵,∴,∴,∵是的垂直平分线,∴,∴,∴,∴,∴,∴是等腰三角形.【点睛】本题考查了作图-复杂作图,涉及的知识点有:垂直平分线的作法,等腰三角形的性质,线段垂直平分线的性质得,三角形内角和定理,三角形外角的性质以及等腰三角形的判定等.24、探究三:16,6;结论:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 标准化政策研究-洞察阐释
- 吗啡类药物的滥用与预防研究-洞察阐释
- 悬挂式离子风机项目投资风险评估报告
- 混沌与智能城市-洞察阐释
- 菱帅自动驾驶安全风险识别-洞察阐释
- 基于神经网络的带状地图特征提取-洞察阐释
- 用户体验设计咨询-洞察阐释
- 安全漏洞检测与防护机制研究-洞察阐释
- 跨国并购反垄断审查-洞察阐释
- 黄金与美元在新兴市场国家中的投资机会-洞察阐释
- 集客业务培训心得
- 车间成本控制管理制度
- 厂房屋顶光伏项目可行性分析报告
- PADI潜水OW理论知识课件
- 2025年“安康杯”安全生产知识竞赛考试题(附答案)
- 模具钳工应聘简历
- 2025年《处方管理办法》标准课件
- 低压电工作业试题含参考答案
- 2025年中考物理知识点归纳(挖空版)
- 风电吊装安全培训
- GB/T 45227-2025化工园区封闭管理系统技术要求
评论
0/150
提交评论