2024年云南省昭通市巧家县八年级数学第二学期期末考试模拟试题含解析_第1页
2024年云南省昭通市巧家县八年级数学第二学期期末考试模拟试题含解析_第2页
2024年云南省昭通市巧家县八年级数学第二学期期末考试模拟试题含解析_第3页
2024年云南省昭通市巧家县八年级数学第二学期期末考试模拟试题含解析_第4页
2024年云南省昭通市巧家县八年级数学第二学期期末考试模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年云南省昭通市巧家县八年级数学第二学期期末考试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,在△中,、是△的中线,与相交于点,点、分别是、的中点,连结.若=6cm,=8cm,则四边形DEFG的周长是()A.14cm B.18cmC.24cm D.28cm2.如图,,垂直平分线段于点,的平分线交于点,连接,则等于()A. B. C. D.3.下列函数中,是的正比例函数的是()A. B. C. D.4.下面哪个点不在函数y=-2x+3的图象上()A.(-5,13) B.(0.5,2) C.(1,2) D.(1,1)5.下列各表达式不是表示与x的函数的是()A.y=3x2 B.y=126.如图是一次函数y=kx+b的图象,则一次函数的解析式是()A.y=﹣4x+3 B.y=4x+3 C.y=x+3 D.y=﹣x+37.李华根据演讲比赛中九位评委所给的分数制作了表格:如果要去掉一个最高分和一个最低分,则表中数据一定不发生变化的是()平均数中位数众数方差8.5分8.3分8.1分0.15A.平均数 B.众数 C.方差 D.中位数8.已知一组数据45,51,54,52,45,44,则这组数据的众数、中位数分别为()A.45,48 B.44,45 C.45,51 D.52,539.下列函数中y是x的一次函数的是()A.y=1x B.y=3x+1 C.y=10.如图,正方形ABCD的边长为4,P为正方形边上一动点,运动路线是A→D→C→B→A,设P点经过的路程为x,以点A、P、D为顶点的三角形的面积是y.则下列图象能大致反映y与x的函数关系的是()A. B. C. D.11.小强同学投掷30次实心球的成绩如下表所示:由上表可知小强同学投掷30次实心球成绩的众数与中位数分别是()A.12m,11.9m B.12m,12.1m C.12.1m,11.9m D.12.1m,12m12.若反比例函数y的图象位于第二、四象限,则k能取的最大整数为()A.0 B.-1 C.-2 D.-3二、填空题(每题4分,共24分)13.如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为__.14.“等边对等角”的逆命题是.15.直角三角形的一条直角边长是另一条直角边长的2倍,斜边长是10,则较短的直角边的长为___________.16.一次智力测验,有20道选择题.评分标准是:对1题给5分,答错或没答每1题扣2分.小明至少答对几道题,总分才不会低于60分.则小明至少答对的题数是________.17.将直线向上平移个单位,得到直线_______。18.如图,以点O为圆心的三个同心圆把以OA1为半径的大圆的面积四等分,若OA1=R,则OA4:OA3:OA2:OA1=______________,若有()个同心圆把这个大圆等分,则最小的圆的半径是=_______.三、解答题(共78分)19.(8分)如图,四边形是正方形,点是上的任意一点,于点,交于点.求证:20.(8分)如图,在菱形中,.请根据下列条件,仅用无刻度的直尺过顶点作菱形的边上的高。(1)在图1中,点为中点;(2)在图2中,点为中点.21.(8分)在一次数学实践活动中,观测小组对某品牌节能饮水机进行了观察和记录,当观察到第分钟时,水温为,记录的相关数据如下表所示:第一次加热、降温过程…t(分钟)0102030405060708090100…y()204060801008066.757.15044.440…(饮水机功能说明:水温加热到时饮水机停止加热,水温开始下降,当降到时饮水机又自动开始加热)请根据上述信息解决下列问题:(1)根据表中数据在如图给出的坐标系中,描出相应的点;(2)选择适当的函数,分别求出第一次加热过程和第一次降温过程关于的函数关系式,并写出相应自变量的取值范围;(3)已知沏茶的最佳水温是,若18:00开启饮水机(初始水温)到当晚20:10,沏茶的最佳水温时间共有多少分钟?22.(10分)小颖用四块完全一样的长方形方砖,恰好拼成如图1所示图案,如图1,连接对角线后,她发现该图案中可以用“面积法”采用不同方案去证明勾股定理.设AE=a,DE=b,AD=c,请你找到其中一种方案证明:a1+b1=c1.23.(10分)学校准备从甲乙两位选手中选择一位参加汉字听写大赛,学校对两位选手的表达能力、阅读理解、综合素质和汉字听写四个方面做了测试,他们的各项成绩(百分制)如表:选手表达能力阅读理解综合素质汉字听写甲85788573乙73808283如果表达能力、阅读理解、综合素质和汉字听写成绩按照2:1:3:4的比确定,请分别计算两名选手的平均成绩,从他们的成绩看,应选派谁?24.(10分)将矩形ABCD绕点A顺时针旋转α(0°<α<360°),得到矩形AEFG.(1)如图,当点E在BD上时.求证:FD=CD;(2)当α为何值时,GC=GB?画出图形,并说明理由.25.(12分)定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图1,等腰直角四边形ABCD,AB=BC,∠ABC=90°.图1①若AB=CD=1,AB∥CD,求对角线BD的长.②若AC⊥BD,求证:AD=CD;(2)如图2,矩形ABCD的长宽为方程x2-14x+40=0的两根,其中(BC>AB),点E从A点出发,以1个单位每秒的速度向终点D运动;同时点F从C点出发,以2个单位每秒的速度向终点B运动,当点E、F运动过程中使四边形ABFE是等腰直角四边形时,求EF图226.已知某企业生产的产品每件出厂价为70元,其成本价为25元,同时在生产过程中,平均每生产一件产品有1m3的污水排出,为达到排污标准,现有以下两种处理污水的方案可供选择.方案一:将污水先净化处理后再排出,每处理1m3污水的费用为3元,并且每月排污设备损耗为24000元.方案二:将污水排到污水厂统一处理,每处理1m3污水的费用为15元,设该企业每月生产x件产品,每月利润为y元.(1)分别写出该企业一句方案一和方案二处理污水时,y与x的函数关系式;(2)已知该企业每月生产1000件产品,如果你是该企业的负责人,那么在考虑企业的生产实际前提下,选择哪一种污水处理方案更划算?

参考答案一、选择题(每题4分,共48分)1、A【解析】

试题分析:∵点F、G分别是BO、CO的中点,BC=8cm∴FG=BC=4cm∵BD、CE是△ABC的中线∴DE=BC=4cm∵点F、G、E、D分别是BO、CO、AB、AC的中点,AO=6cm∴EF=AO=3cm,DG=AO=3cm∴四边形DEFG的周长="EF+FG+DG+DE=14"cm故选A考点:1、三角形的中位线;2、四边形的周长2、A【解析】

由直角三角形的性质可得∠ABD的度数,然后由BE平分可求得∠EBC的度数,再根据线段垂直平分线的性质和等腰三角形的性质可得答案.【详解】解:∵垂直平分线段,∴∠ADB=90°,EB=EC,∵,∴∠ABD=50°,∵BE是的平分线,∴∠EBC=∠ABD=25°,∵EB=EC,∴∠C=∠EBC=25°.故选A.【点睛】本题考查了直角三角形两锐角互余的性质、角平分线的概念、线段垂直平分线的性质和等腰三角形的性质,知识点虽多但难度不大,属于基础题型.3、A【解析】

根据正比例函数的定义逐一判断即可.【详解】A.是正比例函数,故A符合题意;B.不是正比例函数,故B不符合题意;C.不是正比例函数,故C不符合题意;D.不是正比例函数,故D不符合题意.故选A.【点睛】此题考查的是正比例函数,掌握正比例函数的定义是解决此题的关键.4、C【解析】

分别把A,B,C,D四个选项的点代入函数y=-2x+3中,由此进行判断,能求出结果.【详解】解:∵y=-2x+3,

∴当x=-5时,y=13,故(-5,13)在函数y=-2x+3的图象上;

当x=0.5时,y=2,故(0.5,2)在函数y=-2x+3的图象上;

当x=1时,y=12,故(1,2)不在函数y=-2x+3的图象上;

当x=1时,y=1,故(1,1)在函数y=-2x+3的图象上.

故选:C.【点睛】本题考查不满足一次函数的点的判断,是基础题,解题时要认真审题,注意函数性质的合理运用.5、C【解析】

根据函数的概念进行判断。满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可得出答案.【详解】解:A、y=3x2对于x的每一个取值,y都有唯一确定的值,所以y是x的函数,不符合题意;

B、y=12对于x的每一个取值,y都有唯一确定的值是12,所以y是x的函数,不符合题意;

C、y=±xx>0对于x的每一个取值,y都有两个值,所以y不是x的函数,符合题意;

D、y=3x+1对于x的每一个取值,y都有唯一确定的值,所以y是x【点睛】主要考查了函数的概念.函数的概念:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.6、C【解析】

将点(﹣4,0)、(0,1)坐标代入一次函数y=kx+b求出k、b即可.【详解】解:设一次函数解析式为:y=kx+b,根据题意,将点A(﹣4,0)和点B(0,1)代入得:,解得:,∴一次函数解析式为:y=x+1.故选C.【点睛】本题考查的是待定系数法求一次函数的解析式,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.7、D【解析】

由一组按大小顺序排列起来的数据中处于中间位置的数叫做中位数;接下来根据中位数的定义,结合去掉一个最高分和一个最低分,不难得出答案.【详解】解:中位数是将一组数从小到大的顺序排列,取中间位置或中间两个数的平均数得到,所以如果要去掉一个最高分和一个最低分,则表中数据一定不发生变化的是中位数.故选D.【点睛】本题主要考查平均数、众数、方差、中位数的定义,其中一组按大小顺序排列起来的数据中处于中间位置的数叫做中位数.8、A【解析】

先把原数据按由小到大排列,然后根据众数、中位数的定义求解.【详解】数据从小到大排列为:44,45,45,51,52,54,所以这组数据的众数为45,中位数为×(45+51)=48,故选A.【点睛】本题考查了众数与中位数,熟练掌握众数与中位数的概念以及求解方法是解题的关键.一组数据中出现次数最多的数据叫做众数.一组数据按从小到大的顺序排列,位于最中间的数(或中间两个数的平均数)叫做这组数据的中位数.9、B【解析】

利用一次函数的定义即能找到答案.【详解】选项A:含有分式,故选项A错误;选项B:满足一次函数的概念,故选项B正确.选项C:含有分式,故选项C错误.选项D:含有二次项,故选项D错误.故答案为:B.【点睛】此题考查一次函数的定义,解题关键在于掌握其定义.10、B【解析】通过几个特殊点就大致知道图像了,P点在AD段时面积为零,在DC段先升,在CB段因为底和高不变所以面积不变,在BA段下降,故选B11、D【解析】

根据众数和中位数的定义分别进行判断即得答案.【详解】解:由表可知:12.1出现了10次,出现的次数最多,所以小强同学投掷30次实心球成绩的众数是12.1m,把这些数从小到大排列,最中间的第15、16个数是12、12,则中位数是12+122=12(m【点睛】本题考查众数和中位数的概念,众数是指一组数据中出现次数最多的数据,而中位数是指将一组数据按从小(大)到大(小)的顺序排列起来,位于最中间的数(或最中间两个数的平均数).具体判断时,切勿将表中的“成绩”与“频数”混淆,从而做出错误判断.12、B【解析】

由图像位于第二、四象限得2k+10,求得k的取值范围即可得到答案.【详解】∵反比例函数y图象位于第二、四象限,∴2k+10,∴,∴k的最大整数解为-1,故选:B.【点睛】此题考查反比例函数的性质,由函数图像所在的象限确定比例系数的取值范围.二、填空题(每题4分,共24分)13、【解析】

延长AB至M,使BM=AE,连接FM,证出△DAE≌EMF,得到△BMF是等边三角形,再利用菱形的边长为4求出时间t的值.【详解】延长AB至M,使BM=AE,连接FM,∵四边形ABCD是菱形,∠ADC=120°∴AB=AD,∠A=60°,∵BM=AE,∴AD=ME,∵△DEF为等边三角形,∴∠DAE=∠DFE=60°,DE=EF=FD,∴∠MEF+∠DEA═120°,∠ADE+∠DEA=180°﹣∠A=120°,∴∠MEF=∠ADE,∴△DAE≌EMF(SAS),∴AE=MF,∠M=∠A=60°,又∵BM=AE,∴△BMF是等边三角形,∴BF=AE,∵AE=t,CF=2t,∴BC=CF+BF=2t+t=3t,∵BC=4,∴3t=4,∴t=考点:(1)、菱形的性质;(2)、全等三角形的判定与性质;(3)、等边三角形的性质.14、等角对等边【解析】试题分析:交换命题的题设和结论即可得到该命题的逆命题;解:“等边对等角”的逆命题是等角对等边;故答案为等角对等边.【点评】本题考查了命题与定理的知识,解题的关键是分清原命题的题设和结论.15、1【解析】

根据边之间的关系,运用勾股定理,列方程解答即可.【详解】由题意可设两条直角边长分别为x,2x,由勾股定理得x2+(2x)2=(1)2,解得x1=1,x2=-1舍去),所以较短的直角边长为1.故答案为:1【点睛】本题考查了一元二次方程和勾股定理的应用,解题的关键是根据勾股定理得到方程,转化为方程问题.16、1【解析】

设小明答对的题数是x道,则答错或没答的为(20-x)道,根据总分才不会低于60分,这个不等量关系可列出不等式求解.【详解】设小明答对的题数是x道,则答错或没答的为(20-x)道,根据题意可得:5x-2(20-x)≥60,解得:x≥14,∵x为整数,∴x的最小值为1.故答案是:1.【点睛】考查了一元一次不等式的应用.首先要明确题意,找到关键描述语即可解出所求的解.17、【解析】

根据平移k不变,b值加减即可得出答案.【详解】平移后解析式为:y=2x−1+4=2x+3,故答案为:y=2x+3【点睛】此题考查一次函数图象与几何变换,解题关键在于掌握平移的性质18、【解析】

根据每个圆与大圆的面积关系,即可求出每个圆的半径长,即可得到结论.【详解】∵π•OA42=π•OA12,

∴OA42=OA12,

∴OA4=OA1;

∵π•OA32=π•OA12,

∴OA32=OA12,

∴OA3=OA1;

∵π•OA22=π•OA12,

∴OA22=OA12,

∴OA2=OA1;∵OA1=R

因此这三个圆的半径为:OA2=R,OA3=R,OA4=R.∴OA4:OA3:OA2:OA1=由此可得,有()个同心圆把这个大圆等分,则最小的圆的半径是=故答案为:(1);(2).【点睛】本题考查了算术平方根的定义和性质;弄清每个圆与大圆的面积关系是解题的关键.三、解答题(共78分)19、见详解.【解析】

结合正方形的性质利用AAS可证,由全等三角形对应边相等的性质易证结论.【详解】证明:四边形ABCD是正方形在和中,【点睛】本题主要考查了全等三角形的判定与性质,灵活的利用正方形的性质及平行线的性质确定全等的条件是解题的关键.20、(1)见解析;(2)见解析.【解析】

(1)在菱形中,,可知△ACD是等边三角形,过顶点作菱形的边上的高,即找到AD的边中点即可.根据菱形是中心对称图形,连接AC、BD得到对称中心O,再作直线交于,连接,即可.(2)在菱形中,,可知△ACD是等边三角形,过顶点作菱形的边上的高,即找到AD的边中点即可.根据菱形是轴对称图形,连接,交于点,作直线交于,线段即为所求.【详解】解:(1)如图1中,连接,交于点,作直线交于,连接,线段即为所求.(2)如图2中,连接,交于点,作直线交于,线段即为所求.【点睛】本题考查菱形的性质,三角形的高的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21、(1)见解析;(2)第一次加热:,;第一次降温:,;(3)分钟.【解析】

(1)利用描点法画出图形即可;(2)利用待定系数法即可解决问题;(3)首先判断出而18:00至1:10共130分钟,饮水机加热一次,降温一次,再加热了一次的过程,分别求出加热过程中,降温过程中的最佳水温时间即可解决问题;【详解】解:(1)如图所示:(2)观察图象可知第一次加热过程的函数关系是一次函数,设解析式为y=kt+b,则有,解得:,∴第一次加热过程的函数关系是y=2x+1.(0≤t≤40)由图象可知第一次降温过程的函数关系是反比例函数,设y=,把(50,80)代入得到m=4000,∴第一次降温过程的函数关系是y=(40≤t≤100).(3)由题意可知,第二次加热观察时间为30分钟,结束加热是第130分钟,而18:00至1:10共130分钟,∴饮水机加热一次,降温一次,再加热了一次,把y=80代入y=2t+1,得到t=30,把y=90代入y=2x+1,得到t=35,∴一次加热过程出现的最佳水温时间为:35−30=5分钟,把y=80代入y=,得到t=50,把y=90代入y=,得到t=,∴一次降温出现的最佳水温时间为:50−=(分钟),∴18:00开启饮水机(初始水温1℃)到当晚1:10,沏茶的最佳水温时间共:+5×2=(分钟).【点睛】本题考查的是反比例函数的应用、一次函数的应用,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.22、见解析【解析】

根据S正方形EFGH=4S△AED+S正方形ABCD,列式可得结论.【详解】解:∵AE=a,DE=b,AD=c,∴S正方形EFGH=EH1=(a+b)1,S正方形EFGH=4S△AED+S正方形ABCD=4×ab+c1,∴(a+b)1=1ab+c1,∴a1+b1=c1.【点睛】本题考查了用数形结合来证明勾股定理,证明勾股定理常用的方法是利用面积证明,本题锻炼了同学们数形结合的思想方法.23、应派乙去【解析】

根据选手四项的得分求出加权平均成绩,比较即可得到结果.【详解】=85×0.2+78×0.1+85×0.3+73×0.4=79.5=73×0.2+80×0.1+82×0.3+83×0.4=80.4从他们的成绩看,应选派乙.【点睛】本题考查了加权平均数,熟练掌握加权平均数的求法是解答本题的关键.24、(1)见解析;(2)见解析.【解析】

(1)先运用SAS判定△AED≌△FDE,可得DF=AE,再根据AE=AB=CD,即可得出CD=DF;(2)当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论,依据∠DAG=60°,即可得到旋转角α的度数.【详解】(1)由旋转可得,AE=AB,∠AEF=∠ABC=∠DAB=90°,EF=BC=AD,∴∠AEB=∠ABE,又∵∠ABE+∠EDA=90°=∠AEB+∠DEF,∴∠EDA=∠DEF,又∵DE=ED,∴△AED≌△FDE(SAS),∴DF=AE,又∵AE=AB=CD,∴CD=DF;(2)如图,当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论:①当点G在AD右侧时,取BC的中点H,连接GH交AD于M,∵GC=GB,∴GH⊥BC,∴四边形ABHM是矩形,∴AM=BH=AD=AG,∴GM垂直平分AD,∴GD=GA=DA,∴△ADG是等边三角形,∴∠DAG=60°,∴旋转角α=60°;②当点G在AD左侧时,同理可得△ADG是等边三角形,∴∠DAG=60°,∴旋转角α=360°﹣60°=300°.【点睛】本题考查旋转的性质、全等三角形的判定(SAS)与性质的运用,解题关键是掌握旋转的性质、全等三角形的判定(SAS)与性质的运用.25、(1)①BD=2;②证明见详解;(2)25或【解析】

(1)①只要证明四边形ABCD是正方形即可解决问题;②只要证明△ABD≌△CBD,即可解决问题;(2)先解方程,求出AB和BC的长度,然后根据题意,讨论当AB=AE,或AB=BF时,四边形ABFE是等腰直角四边形.当AB=AE=4时,连接EF,过F作FG⊥AE,交AE于点G,可得运动的时间为4s,可得CF=8,然后得到GE=2,利用勾股定理得到EF的长度;当AB=BF=4时,连接EF,过点E作EH⊥BF,交BF于点H,可得CF=6,运动的时间为3s,可得AE=3,然后得到FH=1,利用勾股定理

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论