河南省驻马店市驿城区2024届八年级下册数学期末质量跟踪监视模拟试题含解析_第1页
河南省驻马店市驿城区2024届八年级下册数学期末质量跟踪监视模拟试题含解析_第2页
河南省驻马店市驿城区2024届八年级下册数学期末质量跟踪监视模拟试题含解析_第3页
河南省驻马店市驿城区2024届八年级下册数学期末质量跟踪监视模拟试题含解析_第4页
河南省驻马店市驿城区2024届八年级下册数学期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省驻马店市驿城区2024届八年级下册数学期末质量跟踪监视模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.下列图形中,既是中心对称图形又是轴对称图形的是()A. B. C. D.2.如图,平行四边形ABCD的对角线AC、BD相交于点O,下列结论正确的是()A.SABCD=4S△AOBB.AC=BDC.AC⊥BDD.ABCD是轴对称图形3.直线的截距是()A.—3 B.—2 C.2 D.34.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折 B.7折C.8折 D.9折5.能判定四边形ABCD是平行四边形的是()A.AD//BC,AB=CD B.∠A=∠B,∠C=∠DC.∠A=∠C,∠B=∠D D.AB=AD,CB=CD6.如果一个直角三角形的两边分别是6,8,那么斜边上的中线是()A.4B.5C.4或5D.3或57.八年级(6)班一同学感冒发烧住院洽疗,护士为了较直观地了解这位同学这一天24h的体温和时间的关系,可选择的比较好的方法是()A.列表法 B.图象法C.解析式法 D.以上三种方法均可8.已知:1号探测气球从海拔5m处匀速上升,同时,2号探测气球从海拔15m处匀速上升,且两个气球都上升了1h.两个气球所在位置的海拔y(单位:m)与上升时间x(单位:min)之间的函数关系如图所示,根据图中的信息,下列说法:①上升20min时,两个气球都位于海拔25m的高度;②1号探测气球所在位置的海拔关于上升时间x的函数关系式是y=x+5(0≤x≤60);③记两个气球的海拔高度差为m,则当0≤x≤50时,m的最大值为15m.其中,说法正确的个数是()A.0 B.1 C.2 D.39.道路千万条,安全第一条,下列交通标志是中心对称图形的为()A. B. C. D.10.如图,直线L上有三个正方形a,b,c,若a,c的面积分别为1和9,则b的面积为()A.8 B.9 C.10 D.11二、填空题(每小题3分,共24分)11.小明用四根长度相同的木条制作了能够活动的菱形学具,他先把活动学具成为图1所示菱形,并测得∠B=60°,接着活动学具成为图2所示正方形,并测得正方形的对角线AC=2acm,则图1中对角线AC的长为12.如图,已知一次函数与一次函数的图像相交于点P(-2,1),则关于不等式x+b≥mx-n的解集为_____.13.有一块田地的形状和尺寸如图,则它的面积为_________.14.学校团委会为了举办“庆祝五•四”活动,调查了本校所有学生,调查结果如图所示,根据图中给出的信息,这次学校赞成举办郊游活动的学生有____人.15.已知一次函数与的图象交于点P,则点P的坐标为______.16.若关于x的分式方程=+2有正整数解,则符合条件的非负整数a的值为_____.17.如图,函数与函数的图象相交于A、B两点,轴于点C,轴于点D,则四边形ADBC的面积为___________.18.使式子的值为0,则a的值为_______.三、解答题(共66分)19.(10分)如图1,在正方形ABCD中,点E是AB上一点,点F是AD延长线上一点,且DF=BE,连接CE、CF.(1)求证:CE=CF.(2)在图1中,若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗;为什么;(3)根据你所学的知识,运用(1)、(2)解答中积累的经验,完成下列各题,如图2,在四边形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,且∠DCE=45°.①若AE=6,DE=10,求AB的长;②若AB=BC=9,BE=3,求DE的长.20.(6分)如图所示,已知△ABC的三个顶点的坐标分别为A(﹣1,3),B(﹣6,0),C(﹣1,0).(1)请直接写出点A关于原点O对称的点坐标;(1)将△ABC向右平移6个单位,再向上平移3个单位,得到△A1B1C1,画出△A1B1C1;(3)将△ABC绕点O逆时针转90°,得到△A1B1C1,画出△A1B1C1.21.(6分)在正方形中,过点A引射线,交边于点H(H不与点D重合).通过翻折,使点B落在射线上的点G处,折痕交于E,连接E,G并延长交于F.(1)如图1,当点H与点C重合时,与的大小关系是_________;是____________三角形.(2)如图2,当点H为边上任意一点时(点H与点C不重合).连接,猜想与的大小关系,并证明你的结论.(3)在图2,当,时,求的面积.22.(8分)(1)[探索发现]正方形中,是对角线上的一个动点(与点不重合),过点作交线段于点.求证:小玲想到的思路是:过点作于点于点,通过证明得到.请按小玲的思路写出证明过程(2)[应用拓展]如图2,在的条件下,设正方形的边长为,过点作交于点.求的长.23.(8分)如图,在平行四边形中,分别为边长的中点,连结.若,则四边形是什么特殊四边形?请证明你的结论.24.(8分)如图:在ΔABC中,AD平分∠BAC,且BD=CD,DE⊥AB于点E,DF⊥AC于点F.(1)求证:AB=AC;(2)若DC=4,∠DAC=30∘,求AD25.(10分)作图题.小峰一边哼着歌“我是一条鱼,快乐的游来游去”,一边试着在平面直角坐标系中画出了一条鱼.如图,O(0,0),A(5,4),B(3,0),C(5,1),D(5,-1),E(4,-2).(1)作“小鱼”关于原点O的对称图形,其中点O,A,B,C,D,E的对应点分别为O1,A1,B1,C1,D1,E1(不要求写作法);(2)写出点A1,E1的坐标.26.(10分)八年级380名师生参加户外拓展活动,计划租用7辆客车,现有甲、乙两种型号客车,它们的载客量和租金如表甲种客车乙种客车载客量(座/辆)6045租金(元/辆)550450(1)设租用乙种客车x辆,租车总费用为y元求出y(元)与x(辆)之间的函数表达式;(2)当乙种客车租用多少辆时,能保障所有的师生能参加户外拓展活动且租车费用最少,最少费用是多少元?

参考答案一、选择题(每小题3分,共30分)1、B【解析】

首先根据把一个图形沿着一条直线对折后两部分完全重合,这样的图形叫轴对称图形,分别找出各选项所给图形中是轴对称图形的选项,进而排除不是轴对称图形的选项;然后再分析得到的是轴对称图形的选项,根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,找出它们当中是中心对称图形的选项即可【详解】A是中心对称图形,不是轴对称图形,不符合题意B.既是中心对称图形又是轴对称图形,符合题意;C.既不是中心对称图形,也不是轴对称图形,不符合题意D是轴对称图形,不是中心对称图形,不符合题意故选B【点睛】此题主要考查中心对称图形和轴对称图形,根据定义对各选项进行分析判断是解决问题的关键;2、A【解析】

试题分析:A、∵平行四边形ABCD的对角线AC、BD相交于点O,∴AO=CO,DO=BO.∴S△AOD=S△DOC=S△BOC=S△AOB.∴SABCD=4S△AOB,故此选项正确;B、无法得到AC=BD,故此选项错误;C、无法得到AC⊥BD,故此选项错误;D、ABCD是中心对称图形,不是轴对称图形,故此选项错误.故选A.3、A【解析】

由一次函数y=kx+b在y轴上的截距是b,可求解.【详解】∵在一次函数y=2x−1中,b=−1,∴一次函数y=2x−1的截距b=−1.故选:A.【点睛】本题考查了一次函数图象上点的坐标特征.一次函数图象上的点的坐标,一定满足该函数的关系式.4、B【解析】

设可打x折,则有1200×-800≥800×5%,解得x≥1.即最多打1折.故选B.【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以2.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解.5、C【解析】

根据平行四边形的判定定理依次确定即可.【详解】A.AD//BC,AB=CD,不能判定四边形ABCD是平行四边形,故不符合题意;B.∠A=∠B,∠C=∠D,不能判定四边形ABCD是平行四边形,故不符合题意;C.∠A=∠C,∠B=∠D,能判定四边形ABCD是平行四边形,故符合题意;D.AB=AD,CB=CD,不能判定四边形ABCD是平行四边形,故不符合题意;故选:C.【点睛】此题考查平行四边形的判定定理,熟记定理内容即可正确解答.6、C【解析】当一个直角三角形的两直角边分别是6,8时,由勾股定理得,斜边==10,则斜边上的中线=×10=5,当8是斜边时,斜边上的中线是4,故选C.7、B【解析】

列表法能具体地反映自变量与函数的数值对应关系,在实际生活中应用非常广泛;解析式法准确地反映了函数与自变量之间的对应规律,根据它可以由自变量的取值求出相应的函数值,反之亦然;图象法直观地反映函数值随自变量的变化而变化的规律.【详解】解:护士为了较直观地了解这位同学这一天24h的体温和时间的关系,可选择的比较好的方法是图象法,有利于判断体温的变化情况,故选:B.【点睛】本题主要考查了函数的表示方法,图象法直观地反映函数值随自变量的变化而变化的规律.8、D【解析】

根据一次函数的图象和性质,由两点坐标分别求出1、2号探测球所在位置的海拔y关于上升时间x的函数关系式,结合图象即可判定结论是否正确.【详解】从图象可知,上升20min时,两个气球都位于海拔25m的高度,故①正确;1号探测气球的图象过设=kx+b,代入点坐标可求得关系式是=x+5(0≤x≤60),同理可求出,2号球的函数解析式为,故②正确;利用图象可以看出,20min后,1号探测气球的图象始终在2号探测气球的图象的上方,而且都随着x的增大而增大,所以当x=50时,两个气球的海拔高度差m有最大值,此时m=,代入x=50,得m=15,故③正确.【点睛】考查了一次函数的图象和性质,一次函数解析式的求法,图象增减性的综合应用,熟记图象和性质特征是解题的关键.9、B【解析】

结合中心对称图形的概念求解即可.【详解】解:A、不是中心对称图形,本选项错误;

B、是中心对称图形,本选项正确;

C、不是中心对称图形,本选项错误;

D、不是中心对称图形,本选项错误.

故选:B.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.10、C【解析】

试题分析:运用正方形边长相等,再根据同角的余角相等可得∠BAC=∠DCE,然后证明△ACB≌△DCE,再结合全等三角形的性质和勾股定理来求解即可.解:由于a、b、c都是正方形,所以AC=CD,∠ACD=90°;∵∠ACB+∠DCE=∠ACB+∠BAC=90°,即∠BAC=∠DCE,在△ABC和△CED中,,∴△ACB≌△CDE(AAS),∴AB=CE,BC=DE;在Rt△ABC中,由勾股定理得:AC2=AB2+BC2=AB2+DE2,即Sb=Sa+Sc=1+9=10,∴b的面积为10,故选C.考点:全等三角形的判定与性质;勾股定理;正方形的性质.二、填空题(每小题3分,共24分)11、a【解析】

如图1,2中,连接AC.在图2中,理由勾股定理求出BC,在图1中,只要证明△ABC是等边三角形即可解决问题.【详解】如图1,2中,连接AC.在图2中,∵四边形ABCD是正方形,∴AB=BC,∠B=90°,∵AC=40°,∴AB=BC=a,在图1中,∵∠B=60°,BA=BC,∴△ABC是等边三角形,∴AC=BC=a.故答案为:a.【点睛】此题考查菱形的性质,正方形的性质,解题关键在于作辅助线.12、【解析】

观察函数图象得到,当时,一次函数y1=x+b的图象都在一次函数y2=mx-n的图象的上方,由此得到不等式x+b>mx-n的解集.【详解】解:不等式x+b≥mx-n的解集为.故答案为.【点睛】本题考查一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.13、1.【解析】

先连接AC,求出AC的长,再判断出△ABC的形状,继而根据三角形面积公式进行求解即可.【详解】连接AC,∵△ACD是直角三角形,∴,因为102+122=132,所以△ABC是直角三角形,则要求的面积即是两个直角三角形的面积差,即×24×10-×6×8=120-24=1,故答案为:1.【点睛】本题考查了勾股定理及其逆定理,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.14、250【解析】

由扇形统计图可知,赞成举办郊游的学生占1-40%-35%=25%,根据赞成举办文艺演出的人数与对应的百分比可求出总人数,由此即可解决.【详解】400÷40%=1000(人),1000×(1-40%-35%)=1000×25%=250(人),故答案为250.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.15、(3,0)【解析】

解方程组,可得交点坐标.【详解】解方程组,得,所以,P(3,0)故答案为(3,0)【点睛】本题考核知识点:求函数图象的交点.解题关键点:解方程组求交点坐标.16、1【解析】

先解分式方程得x=,由分式方程有正整数解,得出a+1=4,或a+1=1,且a≠0,解出a的值,最后根据a为非负整数即可得出答案.【详解】解:方程两边同时乘以x﹣1,得:3﹣ax=3+1(x﹣1),解得x=,∵是正整数,且≠1,∴a+1=4,或a+1=1,且a≠0,a=1或a=-1(不符合题意,舍去)∴非负整数a的值为:1,故答案为:1.【点睛】本题考查了解分式方程,注意不要漏掉分母不能为零的情况.17、1【解析】

解出AB两点的坐标,可判断出四边形ADBC是平行四边形,由平行四边形对角线平分平行四边形的面积,所以四边形ADBC的面积为.【详解】解:解二元一次方程方程组解得或则A点坐标为(-2,2),B点坐标为(2,-2)C点坐标为(0,2),D点坐标为(2,-2)所以AC∥BD,AC=BD=2所以四边形ADBC是平行四边形则==2××2×4=1,故答案为1.【点睛】本题考查了正比例函数与反比例函数交点组成四边形求面积的问题,掌握相关知识点是解决本题的关键.18、【解析】

根据分式值为0,分子为0,分母不为0解答即可.【详解】∵的值为0,∴2a-1=0,a+2≠0,∴a=.故答案为:【点睛】本题考查分式为0的条件,要使分式值为0,则分子为0,分母不为0;熟练掌握分式为0的条件是解题关键.三、解答题(共66分)19、(1)证明见解析;(2)成立;(3)①12;②7.1【解析】

(1)先判断出∠B=∠CDF,进而判断出△CBE≌△CDE,即可得出结论;(2)先判断出∠BCE=∠DCF,进而判断出∠ECF=∠BCD=90°,即可得出∠GCF=∠GCE=41°,得出△ECG≌△FCG即可得出结论;(3)先判断出矩形ABCH为正方形,进而得出AH=BC=AB,①根据勾股定理得,AD=8,由(1)(2)知,ED=BE+DH,设BE=x,进而表示出DH=10-x,用AH=AB建立方程即可得出结论;②由(1)(2)知,ED=BE+DH,设DE=a,进而表示出DH=a-3,AD=12-a,AE=6,根据勾股定理建立方程求解即可得出结论.【详解】解:(1)在正方形ABCD中,∵BC=CD,∠B=∠ADC,∴∠B=∠CDF,∵BE=DF,∴△CBE≌△CDF,∴CE=CF;(2)成立,由(1)知,△CBF≌△CDE,∴∠BCE=∠DCF,∴∠BCE+∠ECD=∠DCF+∠ECD,∴∠ECF=∠BCD=90°,∵∠GCE=41°,∴∠GCF=∠GCE=41°,∵CE=CF,∠GCE=∠GCF,GC=GC,∴△ECG≌△FCG,∴GE=GF,∴GE=DF+GD=BE+GD;(3)如图2,过点C作CH⊥AD交AD的延长线于H,∵AD∥BC,∠B=90°,∴∠A=90°,∵∠CHA=90°,∴四边形ABCH为矩形,∵AB=BC,∴矩形ABCH为正方形,∴AH=BC=AB,①∵AE=6,DE=10,根据勾股定理得,AD=8,∵∠DCE=41°,由(1)(2)知,ED=BE+DH,设BE=x,∴10+x=DH,∴DH=10-x,∵AH=AB,∴8+10-x=x+6,∴x=6,∴AB=12;②∵∠DCE=41°,由(1)(2)知,ED=BE+DH,设DE=a,∴a=3+DH,∴DH=a-3,∵AB=AH=9,∴AD=9-(a-3)=12-a,AE=AB-BE=6,根据勾股定理得,DE2=AD2+AE2,即:(12-a)2+62=a2,∴a=7.1,∴DE=7.1.【点睛】本题是四边形综合题,考查了矩形的判定,正方形的判定和性质,勾股定理,全等三角形的判定和性质,判断出△ECG≌△FCG是解本题的关键.20、(1)(1,-3);(1)详见解析;(3)详见解析【解析】

(1)根据关于原点对称的点的特征即可;(1)根据平移方向画出图形即可;(3)根据旋转角度及旋转方向画出图形即可.【详解】(1)点A关于原点对称的点坐标为(1,-3)(1)如下图所示,(3)如下图所示,【点睛】本题考查了关于原点对称的点的特征及平移画图,旋转画图问题,解题的关键是明确平移方向或旋转方向.21、(1);等腰直角.(2)详见解析;(3)【解析】

(1)连接AF,由正方形的性质及折叠的性质已知,由全等可知,CF=CE,结合可确定是等腰直角三角形;(2)连接AF,由正方形的性质及折叠的性质已知,即证;(3)设,依据题意及(2)的结论用含x的式子确定出的三边长,根据勾股定理求出x的值,即可求面积.【详解】解:(1)连接,∵四边形是正方形,∴,.由翻折可知,.∵,∴.…∴.又平分∴AC垂直平分EF∴∴是等腰直角三角形.故答案为:;等腰直角.(2)连接,∵四边形是正方形的对角线,∴,.由翻折可知,.∵,∴.…∴.…(3)设,则,.在中,,即.解得,即的长为.∴;…∴.…【点睛】本题考查了正方形的综合问题,涉及的知识点有正方形的性质、全等三角形的证明、勾股定理,灵活将正方形的性质与三角形的知识相结合是解题的关键.22、(1)详见解析;(2)【解析】

(1)过点P作PG⊥BC于G,过点P作PH⊥DC于H,如图1.要证PB=PE,只需证到△PGB≌△PHE即可;(2)连接BD,如图2.易证△BOP≌△PFE,则有BO=PF,只需求出BO的长即可.【详解】证明:过点作于点,于点是对角线上的动点,∠GPC+∠CPE=90°(2)连接BD,如图2.∵四边形ABCD是正方形,∴∠BOP=90°.∵PE⊥PB即∠BPE=90°,∴∠PBO=90°-∠BPO=∠EPF.∵EF⊥PC即∠PFE=90°,∴∠BOP=∠PFE.在△BOP和△PFE中,,∴△BOP≌△PFE(AAS),∴BO=PF.∵四边形ABCD是正方形,∴OB=OC,∠BOC=90°,∴BC=OB.∵BC=2,∴OB=,∴PF=.【点睛】本题主要考查了正方形的性质、等腰三角形的性质、全等三角形的判定与性质等知识,有一定的综合性,而通过添加辅助线证明三角形全等是解决本题的关键.23、四边形是菱形,证明详见解析【解析】

根据平行四边形性质得出DC=AB,DC//AB,推出BE=DF,得出平行四边形BFDE,根据直角三角形斜边上中线得出DE=BE,根据菱形的判定推出即可.【详解】解:四边形是菱形.证明:∵四边形是平行四边形,;∵点是的中点,;,∴四边形是平行四边形;又;∴平行四边形是菱形.【点睛】本题考查了平行四边形的性质和判定,菱形的判定,直角三角形斜边上中线等知识点的应用,关键是证出DE=BE和推出平

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论