![2024届铁岭市重点中学八年级数学第二学期期末经典试题含解析_第1页](http://file4.renrendoc.com/view14/M00/2E/1B/wKhkGWYZel6AIkHPAAG48YREM3k047.jpg)
![2024届铁岭市重点中学八年级数学第二学期期末经典试题含解析_第2页](http://file4.renrendoc.com/view14/M00/2E/1B/wKhkGWYZel6AIkHPAAG48YREM3k0472.jpg)
![2024届铁岭市重点中学八年级数学第二学期期末经典试题含解析_第3页](http://file4.renrendoc.com/view14/M00/2E/1B/wKhkGWYZel6AIkHPAAG48YREM3k0473.jpg)
![2024届铁岭市重点中学八年级数学第二学期期末经典试题含解析_第4页](http://file4.renrendoc.com/view14/M00/2E/1B/wKhkGWYZel6AIkHPAAG48YREM3k0474.jpg)
![2024届铁岭市重点中学八年级数学第二学期期末经典试题含解析_第5页](http://file4.renrendoc.com/view14/M00/2E/1B/wKhkGWYZel6AIkHPAAG48YREM3k0475.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届铁岭市重点中学八年级数学第二学期期末经典试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,直线l上有三个正方形a,b,c,若a,c的面积分别为5和11,则b的面积为()A.12 B.15 C.16 D.182.如图,在△ABC中,∠B=50°,∠C=30°,分别以点A和点C为圆心,大于12AC的长为半径画弧,两弧相交于点M,N,作直线MN交BC于点D,连接AD,则∠BAD的度数为(A.70° B.60° C.50° D.80°3.不等式组的最小整数解是()A.0 B.-1 C.1 D.24.一次函数的图象经过()A.一、二、三象限 B.一、二、四象限C.二、三、四象限 D.一、三、四象限5.下列计算:,其中结果正确的个数为()A.1 B.2 C.3 D.46.如图,平行四边形ABCD的对角线AC,BD交于点O,AE平分∠BAD交BC于点E,且∠ADC=60°,AB=BC,连接OE,下列结论:①∠CAD=30°;②SABCD=AB•AC;③OB=AB:④OE=BC.其中成立的有()A.①②③ B.①②④ C.①③④ D.②③④7.在同一直角坐标系中,一次函数y=(k﹣2)x+k的图象与正比例函数y=kx图象的位置可能是()A. B. C. D.8.已知一个多边形的内角和是,则这个多边形是()A.四边形 B.五边形 C.六边形 D.七边形9.如图,四边形ABCD中,对角线AC与BD相交于O,不能判定四边形ABCD是平行四边形的是()A.AB∥CD,AO=CO B.AB∥DC,∠ABC=∠ADCC.AB=DC,AD=BC D.AB=DC,∠ABC=∠ADC10.已知:以a,b,c为边的三角形满足(a﹣b)(b﹣c)=0,则这个三角形是()A.等腰三角形 B.直角三角形C.等边三角形 D.等腰直角三角形11.下列图形中既是中心对称图形又是轴对称图形的是()A. B. C. D.12.在平而直角坐标系中,已知平行四边形ABCD的三个顶点坐标分别是A(m,n),B(2,-1),C(-m,-n),则关于点D的说法正确的是()甲:点D在第一象限乙:点D与点A关于原点对称丙:点D的坐标是(-2,1)丁:点D与原点距离是.A.甲乙 B.乙丙 C.甲丁 D.丙丁二、填空题(每题4分,共24分)13.如图,正方形OABC的边OA,OC在坐标轴上,矩形CDEF的边CD在CB上,且5CD=3CB,边CF在轴上,且CF=2OC-3,反比例函数y=(k>0)的图象经过点B,E,则点E的坐标是____14.如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3,则∠BE′C=度.15.已知,,,则的值是_______.16.如图,在Rt△ABC中,∠ACB=90°,D、E、F分别是AB、BC、CA的中点,若CD=5cm,则EF=_______cm.17.如图,等腰直角三角形ABC的底边长为6,AB⊥BC;等腰直角三角形CDE的腰长为2,CD⊥ED;连接AE,F为AE中点,连接FB,G为FB上一动点,则GA的最小值为____.18.正六边形的每个内角等于______________°.三、解答题(共78分)19.(8分)先化简,再选择一恰当的a的值代入求值.20.(8分)解分式方程或化简求值(1);(2)先化简,再求值:,其中.21.(8分)如图,四边形ABCD中,AB=AD=2,BC=3,CD=1,∠A=90°,请问△BCD是直角三角形吗?请说明你的理由.22.(10分)如图,在平面直角坐标系中,直线y=x+2与x轴、y轴的交点分别为A、B,直线y=﹣2x+12交x轴于C,两条直线的交点为D;点P是线段DC上的一个动点,过点P作PE⊥x轴,交x轴于点E,连接BP;(1)求△DAC的面积;(2)在线段DC上是否存在一点P,使四边形BOEP为矩形;若存在,写出P点坐标;若不存在,说明理由;(3)若四边形BOEP的面积为S,设P点的坐标为(x,y),求出S关于x的函数关系式,并写出自变量x的取值范围.23.(10分)如图①,直线与双曲线相交于点、,与x轴相交于C点.求点A、B的坐标及直线的解析式;求的面积;观察第一象限的图象,直接写出不等式的解集;如图,在x轴上是否存在点P,使得的和最小?若存在,请说明理由并求出P点坐标.24.(10分)阅读理解:定义:有三个内角相等的四边形叫“和谐四边形”.(1)在“和谐四边形”中,若,则;(2)如图,折叠平行四边形纸片,使顶点,分别落在边,上的点,处,折痕分别为,.求证:四边形是“和谐四边形”.25.(12分)如图,一个正比例函数与一个一次函数的图象交于点A(3,4),其中一次函数与y轴交于B点,且OA=OB.(1)求这两个函数的表达式;(2)求△AOB的面积S.26.如图,在△ABC中,AD是BC边上的中线,点E是AD的中点,过点A作AF//BC交BE的延长线于F,BF交AC于G,连接CF.(1)求证:△AEF≌△DEB;(2)若∠BAC=90∘,试判断四边形(3)求证:CG=2AG.
参考答案一、选择题(每题4分,共48分)1、C【解析】
根据已知及全等三角形的判定可得到△ABC≌△CDE,从而得到b的面积=a的面积+c的面积.【详解】如图:∵∠ACB+∠ECD=90°,∠DEC+∠ECD=90°
∴∠ACB=∠DEC
∵∠ABC=∠CDE,AC=CE,在△ABC和△CDE中,∴△ABC≌△CDE(AAS),
∴BC=DE
∴根据勾股定理的几何意义,b的面积=a的面积+c的面积
∴b的面积=a的面积+c的面积=5+11=1.故选:C【点睛】本题考查了对勾股定理几何意义的理解能力,根据三角形全等找出相等的量是解答此题的关键.2、A【解析】
根据题意尺规作图得到NM是AC的垂直平分线,故AD=CD,则∠C=∠DAC,再利用三角形的内角和求出∠BAC,故可求出∠BAD.【详解】根据题意尺规作图得到NM是AC的垂直平分线,故AD=CD,∴∠DAC=∠C=30°,∵∠B=50°,∠C=30°∴∠BAC=180°-50°-30°=100°,∴∠BAD=∠BAC-∠DAC=70°.故选A.【点睛】此题主要考查垂直平分线的性质,解题的关键是熟知三角形的内角和与垂直平分线的性质.3、A【解析】
解:解不等式组可得,在这个范围内的最小整数为0,所以不等式组的最小整数解是0,故选A4、D【解析】
根据一次函数的解析式得出k及b的符号,再根据一次函数的性质进行解答即可.【详解】解:∵一次函数中k=2>0,b=-4<0,
∴此函数的图象经过一、三、四象限.
故选:D.【点睛】本题考查的是一次函数的性质,正确理解一次函数y=kx+b(k≠0)的图象与k,b的关系是解题的关键.5、D【解析】
根据二次根式的运算法则即可进行判断.【详解】,正确;正确;正确;,正确,故选D.【点睛】此题主要考查二次根式的运算,解题的关键是熟知二次根式的性质:;.6、B【解析】
由▱ABCD中,∠ADC=60°,易得△ABE是等边三角形,又由AB=BC,,证得①∠CAD=30°;继而证得AC⊥AB,得②S▱ABCD=AB•AC;可得OE是三角形的中位线,证得④OE=BC.【详解】解:∵四边形ABCD是平行四边形,
∴∠ABC=∠ADC=60°,∠BAD=120°,
∵AE平分∠BAD,
∴∠BAE=∠EAD=60°
∴△ABE是等边三角形,
∴AE=AB=BE,
∵AB=BC,,∴∠BAC=90°,
∴∠CAD=30°,故①正确;
∵AC⊥AB,
∴S▱ABCD=AB•AC,故②正确,,∵BD>BC,
∴AB≠OB,故③错误;
∵∠CAD=30°,∠AEB=60°,AD∥BC,
∴∠EAC=∠ACE=30°,
∴AE=CE,
∴BE=CE,
∵OA=OC,,故④正确.
故选B.【点睛】此题考查了平行四边形的性质、三角形中位线的性质以及等边三角形的判定与性质.注意证得△ABE是等边三角形,OE是△ABC的中位线是关键.7、C【解析】
根据正比例函数与一次函数的图象性质作答.【详解】解:当k>2时,正比例函数y=kx图象经过1,3象限,一次函数y=(k﹣2)x+k的图象1,2,3象限;当1<k<2时,正比例函数y=kx图象经过1,3象限,一次函数y=(k﹣2)x+k的图象1,2,4象限;当k<1时,正比例函数y=kx图象经过2,4象限,一次函数y=(k﹣2)x+k的图象2,3,4象限,当(k﹣2)x+k=kx时,x=<1,所以两函数交点的横坐标小于1.故选:C.【点睛】本题考查一次函数的图象性质,正比例函数的图象性质,关键是由k的取值确定函数所在的象限.8、B【解析】
根据多边形内角和定理,n边形的内角和公式为,因此,由得n=1.故选B.9、D【解析】【分析】根据平行四边形的判定定理逐项进行分析即可得.【详解】A、∵AB//CD,∴∠ABO=∠CDO,又∵∠AOB=∠COD,AO=OC,∴△AOB≌△COD,∴AB=CD,∴ABCD,∴四边形ABCD是平行四边形,故不符合题意;B、∵AB//CD,∴∠ABO=∠CDO,又∵∠ABC=∠ADC,∴∠CBD=∠ADB,∴AD//BC,∴四边形ABCD是平行四边形,故不符合题意;C、∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,故不符合题意;D、AB=DC,∠ABC=∠ADC,不能得到四边形ABCD是平行四边形,故符合题意,故选D.【点睛】本题考查了平行四边形的判定,关键是掌握判定定理:(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.10、A【解析】
根据题意得到a-b=0或b-c=0,从而得到a=b或b=c,得到该三角形为等腰三角形.【详解】解:因为以a,b,c为边的三角形满足(a﹣b)(b﹣c)=0,所以a﹣b=0或b﹣c=0,得到a=b或b=c,所以三角形为等腰三角形,故选:A.【点睛】本题考查等腰三角形,解题的关键是掌握等腰三角形的性质.11、C【解析】
根据轴对称图形与中心对称图形的概念求解.【详解】A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项错误;C、是轴对称图形,也是中心对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误,故选C.【点睛】本此题考查了轴对称及中心对称图形的判断,解答本题的关键是掌握中心对称图形与轴对称图形的概念.12、D【解析】
根据A,C的坐标特点得到B,D也关于原点对称,故可求出D的坐标,即可判断.【详解】∵平行四边形ABCD中,A(m,n),C(-m,-n)关于原点对称,∴B,D也关于原点对称,∵B(2,-1)∴D(-2,1)故点D在第四象限,点D与原点距离是故丙丁正确,选D.【点睛】此题主要考查平行四边形的性质,解题的关键是熟知各点的坐标特点.二、填空题(每题4分,共24分)13、【解析】
设正方形OABC的边0A=a,可知OA=OC=AB=CB=a,所以点B的坐标为(aa),推出反比例函数解析式的k=a,再由CF=2OC-3,可知CF=2a-3,推出点的坐标为(,3a-3),根据5CD=3CB,可求出点E的坐标【详解】由题意可设:正方形OABC的边OA=a∴OA=OC=AB=CB∴点B的坐标为(a,a),即k=aCF=2OC-3∴CF=2a-3∵OF=OC+CF=a+2a-3=3a-3∴点E的纵坐标为3a-3将3a-3代入反比例函数解析式y=中,可得点E的横坐标为∵四边形CDEF为矩形,∴CD=EF=5CD=3CB=3a,可求得:a=将a=,代入点E的坐标为(,3a-3),可得:E的坐标为故答案为:【点睛】本题考查了反比例函数图像上点的坐标特征,正方形矩形的性质,熟知在反比例函数的题目中利用设点法找等量关系解方程是解题关键14、135【解析】试题分析:如图,连接EE′,∵将△ABE绕点B顺时针旋转30°到△CBE′的位置,AE=1,BE=3,CE=3,∴∠EBE′=30°,BE=BE′=3,AE=E′C=1.∴EE′=3,∠BE′E=45°.∵E′E3+E′C3=8+1=3,EC3=3.∴E′E3+E′C3=EC3.∴△EE′C是直角三角形,∴∠EE′C=30°.∴∠BE′C=135°.15、【解析】
首先根据a+b=−8,和ab=10确定a和b的符号,然后对根式进行化简,然后代入求解即可.【详解】解:原式=则原式=故答案为:.【点睛】本题考查了根式的化简求值,正确确定a和b的符号是解决本题的关键.16、1【解析】
∵△ABC是直角三角形,CD是斜边的中线,∴CD=AB,∴AB=2CD=2×1=10cm,又∵EF是△ABC的中位线,∴EF=×10=1cm.故答案为1.考点:三角形中位线定理;直角三角形斜边上的中线.17、3.【解析】
运用等腰直角过三角形角的性质,逐步推导出AC⊥EC,当AG⊥BF时AG最小,最后运用平行线等分线段定理,即可求解.【详解】解:∵等腰直角三角形ABC,等腰直角三角形CDE∴∠ECD=45°,∠ACB=45°即AC⊥EC,且CE∥BF当AG⊥BF,时AG最小,所以由∵AF=AE∴AG=CG=AC=3故答案为3【点睛】本题考查了等腰直角三角形三角形的性质和平行线等分线段定理,其中灵活应用三角形中位线定理是解答本题的关键.18、120【解析】试题解析:六边形的内角和为:(6-2)×180°=720°,∴正六边形的每个内角为:=120°.考点:多边形的内角与外角.三、解答题(共78分)19、均可【解析】分析:根据分式的运算法则即可求出答案.详解:原式=(+)•=•=∵,∴a≠±1,∴把a=1代入得:原式=1.点睛:本题考查了分式的运算,解题的关键是运用分式的运算法则,本题属于基础题型.20、;.【解析】
(1)将方程右边的式子提取-1变形后,方程两边同时乘以2x-1,去分母后求出x的值,将x的代入最简公分母检验,即可得到原分式方程的解;(2)将原式被除数括号中两项通分并利用同分母分式的加法法则计算,同时利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,把x的值代入化简后的式子中计算,即可得到原式的值.【详解】(1)x=2(2x-1)+3x-4x=3-2-3x=1(2)===把代入原式=.【点睛】考查了分式的化简求值,以及分式方程的解法,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,约分时,分式的分子分母出现多项式,应将多项式分解因式后再约分.21、△BCD是直角三角形【解析】
首先在Rt△BAD中,利用勾股定理求出BD的长,再根据勾股定理逆定理在△BCD中,证明△BCD是直角三角形.【详解】△BCD是直角三角形,理由:在Rt△BAD中,∵AB=AD=2,∴BD==,在△BCD中,BD2+CD2=()2+12=9,BC2=32=9,∴BD2+CD2=BC2,△BCD是直角三角形.【点睛】此题主要考查了勾股定理和勾股定理逆定理,关键是掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.22、(1)S△DAC=1;(2)存在,点P的坐标是(5,2);(3)S=﹣x2+7x(4≤x<6).【解析】
(1)想办法求出A、D、C三点坐标即可解决问题;(2)存在.根据OB=PE=2,利用待定系数法即可解决问题;(3)利用梯形的面积公式计算即可;【详解】(1)当y=0时,x+2=0,∴x=﹣4,点A坐标为(﹣4,0)当y=0时,﹣2x+12=0,∴x=6,点C坐标为(6,0)由题意,解得,∴点D坐标为(4,4)∴S△DAC=×10×4=1.(2)存在,∵四边形BOEP为矩形,∴BO=PE当x=0时,y=2,点B坐标为(0,2),把y=2代入y=﹣2x+12得到x=5,点P的坐标是(5,2).(3)∵S=(OB+PE)•OE∴S=(2﹣2x+12)•x=﹣x2+7x(4≤x<6).【点睛】本题考查一次函数综合题、二元一次方程组、矩形的判定和性质、梯形的面积公式等知识,解题的关键是熟练掌握待定系数法,学会利用方程组确定两个函数的交点坐标,属于中考常考题型.23、(1);(2);(3);(4)【解析】
(1)先确定出点A,B坐标,再用待定系数法求出直线AB解析式;(2)先求出点C,D坐标,再用面积的差即可得出结论;(3)先确定出点P的位置,利用三角形的三边关系,最后用待定系数法求出解析式,即可得出结论.【详解】解:(1)∵点、在双曲线上,,,,,点A,B在直线上,,,直线AB的解析式为;(2)如图,由(1)知,直线AB的解析式为,,,,,;(3)由(1)知,,,由图象知,不等式的解集为;(4)存在,理由:如图2,作点关于x轴的对称点B′(4,-1),连接AB′交x轴于点P,连接BP,在x轴上取一点Q,连接AQ,BQ,点B与点B′关于x轴对称,点P,Q是BB′的中垂线上的点,∴PB′=PB,QB′=QB,在△AQB′中,AQ+B′Q>AB′的最小值为AB′,,B′(4,-1),直线AB′的解析式为,令,,,.【点睛】本题是反比例函数综合题,涉及了待定系数法,对称的性质,三角形的面积的计算方法,解本题的关键是求出直线AB的解析式和确定出点P的位置.24、(1);(2)见解析.【解析】
(1)根据四边形的内角和是360°,即可得到结论;(2)由四边形DEBF为平行四边形,得到∠E=∠F,且∠E+∠EBF=180°,再根据等角的补角相等,判断出∠DAB=∠DCB=∠ABC即可.【详解】解:(1)∵四边形ABCD是“和谐四边形”,∠A+∠B+∠C+∠D=360°,∵∠B=135°,∴∠A=∠D=∠C=(360°−135°)=75°,故答案为:75°;(2)证明:∵四边形DEBF为平行四边形,∴∠E=∠F,且∠E+∠EBF=180°.∵DE=DA,DF=DC,∴∠E=∠DAE=∠F=∠DCF,∵∠DAE+∠DAB=180°,∠DCF+∠DCB=180°,∠E+∠EBF=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 晋中山西晋中市太谷区面向2025届公费师范生招聘教师18人笔试历年参考题库附带答案详解
- 2025年中国太子佛工艺品市场调查研究报告
- 2025至2031年中国高压透镜行业投资前景及策略咨询研究报告
- 2025年艺术道闸项目可行性研究报告
- 2025年红外线按摩棒项目可行性研究报告
- 2025年电加热针织物呢毯预缩机项目可行性研究报告
- 成都四川成都天府国际竞技训练中心招聘运动员4人笔试历年参考题库附带答案详解
- 2025年曲印项目可行性研究报告
- 2025年揉切粉碎机项目可行性研究报告
- 2025年安康鱼野菜串项目可行性研究报告
- 学校保洁服务投标方案(技术标)
- 《社区工作者培训课件 新浪版》
- 教育信息化背景下的学术研究趋势
- 人教版小学数学(2024)一年级下册第五单元100以内的笔算加、减法综合素养测评 B卷(含答案)
- 2025江苏常州溧阳市部分机关事业单位招聘编外人员78人历年高频重点提升(共500题)附带答案详解
- 2025年教科版科学五年级下册教学计划(含进度表)
- 2024年度体育赛事赞助合同:运动员代言与赞助权益2篇
- 智研咨询发布:2024年中国新疫苗行业市场现状、发展概况、未来前景分析报告
- 2025届西藏林芝一中高三第二次诊断性检测英语试卷含解析
- 中国传统文化非遗文化中国剪纸介绍2
- 药企销售总经理竞聘
评论
0/150
提交评论