版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年新疆维吾尔自治区第二师三十团中学八年级下册数学期末质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如果一个正多边形内角和等于1080°,那么这个正多边形的每一个外角等于()A. B. C. D.2.二次根式有意义的条件是()A.x>3 B.x>-3 C.x≥3 D.x≥-33.如图,,,,都是正三角形,边长分别为2,,,,且BO,,,都在x轴上,点A,,,从左至右依次排列在x轴上方,若点是BO中点,点是中点,,且B为,则点的坐标是A. B. C. D.4.从下列条件中选择一个条件添加后,还不能判定平行四边形ABCD是菱形,则这个条件是()A.AC⊥BD B.AD=CD C.AB=BC D.AC=BD5.估计的结果在().A.8至9之间 B.9至10之间 C.10至11之间 D.11至12之间6.以下列长度的线段为边,能构成直角三角形的是()A.2,3,4 B.4,5,6 C.8,13,5 D.1,,17.小明3分钟共投篮80次,进了50个球,则小明进球的频率是().A.80B.50C.1.6D.0.6258.武汉市光谷实验中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),下列说法错误的是()A.九(1)班的学生人数为40 B.m的值为10C.n的值为20 D.表示“足球”的扇形的圆心角是70°9.如图,直线l:y=﹣x﹣3与直线y=a(a为常数)的交点在第四象限,则a可能在()A.1<a<2 B.﹣2<a<0 C.﹣3≤a≤﹣2 D.﹣10<a<﹣410.下列计算正确的是A. B. C. D.11.如图,在矩形ABCD中,AD=AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有()A.2个 B.3个 C.4个 D.5个12.如图,在框中解分式方程的4个步骤中,根据等式基本性质的是()A.①③ B.①② C.②④ D.③④二、填空题(每题4分,共24分)13.我国古代数学著作《九章算术》有一个问题:一根竹子高1丈,折断后竹子顶端落在离竹子底端3尺处,1丈=10尺,那么折断处离地面的高度是__________尺.14.如图,将矩形沿对角线折叠,使点翻折到点处,如果,那么______.15.如图,和的面积相等,点在边上,交于点.,,则的长是______.16.某校女子排球队的15名队员中有4个人是13岁,7个人是14岁,4个人是15岁,则该校女好排球队队员的平均年龄是____岁.17.某种分子的半径大约是0.0000108mm,用科学记数法表示为______________.18.当x=______时,分式的值为0.三、解答题(共78分)19.(8分)某报社为了了解市民“获取新闻的最主要途径”,开展了一次抽样调查,根据调查结果绘制了如图三种不完整的统计图表.组别获取新闻的最主要途径人数A电脑上网280B手机上网mC电视140D报纸nE其它80请根据图表信息解答下列问题:(1)统计表中的m=,n=,并请补全条形统计图;(2)扇形统计图中“D”所对应的圆心角的度数是;(3)若该市约有120万人,请你估计其中将“电脑上网”和“手机上网”作为“获取新闻的最主要途径”的总人数.20.(8分)平面直角坐标系中,设一次函数的图象是直线.(1)如果把向下平移个单位后得到直线,求的值;(2)当直线过点和点时,且,求的取值范围;(3)若坐标平面内有点,不论取何值,点均不在直线上,求所需满足的条件.21.(8分)解方程:(1-3y)2+2(3y-1)=1.22.(10分)已知:a、b、c满足求:(1)a、b、c的值;(2)试问以a、b、c为边能否构成三角形?若能构成三角形,求出三角形的周长;若不能构成三角形,请说明理由.23.(10分)先化简,再求值:,且x为满足﹣3<x<2的整数.24.(10分)如图,抛物线与轴交于,(在的左侧),与轴交于点,抛物线上的点的横坐标为3,过点作直线轴.(1)点为抛物线上的动点,且在直线的下方,点,分别为轴,直线上的动点,且轴,当面积最大时,求的最小值;(2)过(1)中的点作,垂足为,且直线与轴交于点,把绕顶点旋转45°,得到,再把沿直线平移至,在平面上是否存在点,使得以,,,为顶点的四边形为菱形?若存在直接写出点的坐标;若不存在,说明理由.25.(12分)先化简,再求值:,其中a=326.如图,延长□ABCD的边AB到点E,使BE=AB,连结CE、BD、DE.当AD与DE有怎样的关系时,四边形BECD是矩形?(要求说明理由)
参考答案一、选择题(每题4分,共48分)1、A【解析】
首先设此多边形为n边形,根据题意得:180(n-2)=1080,即可求得n=8,再由多边形的外角和等于360°,即可求得答案.【详解】设此多边形为n边形,根据题意得:180(n-2)=1080,解得:n=8,∴这个正多边形的每一个外角等于:360°÷8=45°.故选A.【点睛】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.2、D【解析】
根据二次根式被开方数大于等于0即可得出答案.【详解】根据被开方数大于等于0得,有意义的条件是解得:故选:D【点睛】本题主要考查二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键.3、C【解析】
根据图形,依次表示各个点A的坐标,可以分别发现横、纵坐标的变化规律,则问题可解.【详解】根据题意点A在边长为2的等边三角形顶点,则由图形可知点A坐标为(-1,)由于等边三角形△A1B1C1,的顶点A1在BO中点,则点A到A1的水平距离为边长2,则点A1坐标为(1,2)以此类推,点A2坐标为(5,4),点A3坐标为(13,8),各点横坐标从-1基础上一次增加2,22,23,…,纵坐标依次是前一个点纵坐标的2倍则点A6的横坐标是:-1+2+22+23+24+25+26=125,纵坐标为:26×=64则点A6坐标是(125,64)故选C.【点睛】本题是平面直角坐标系下的点坐标规律探究题,考查了等边三角形的性质,应用了数形结合思想.4、D【解析】
根据菱形的判定方法结合各选项的条件逐一进行判断即可得.【详解】A、对角线互相垂直的平行四边形是菱形,故A选项不符合题意;B、有一组邻边相等的平行四边形是菱形,故B选项不符合题意;C、有一组邻边相等的平行四边形是菱形,故C选项不符合题意;D、对角线相等的平行四边形是矩形,故D选项符合题意,故选D.【点睛】本题考查了菱形的判定,熟练掌握菱形的判定方法是解答本题的关键.5、C【解析】
先把无理数式子进行化简,化简到6-3的形式,再根据2.236<,再根据不等式的性质求出6-3的范围.【详解】=,因为4.999696<因为2.236<,所以13.416<6,所以10.416<6.所以10至11之间.故选:C.【点睛】考查了无理数的估值,先求出无理数的范围是关键,在结合不等式的性质就可以求出6-3的范围.6、D【解析】
欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A、因为22+32≠42,所以不能组成直角三角形;B、因为52+42≠62,所以不能组成直角三角形;C、因为52+82≠132,所以不能组成直角三角形;D、因为12+12=()2,所以能组成直角三角形.故选:D.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.7、D【解析】试题分析:频率等于频数除以数据总和,∵小明共投篮81次,进了51个球,∴小明进球的频率=51÷81=1.625,故选D.考点:频数与频率.8、D【解析】分析:由条形统计图和扇形统计图得到喜欢篮球的人数而后所占的百分比,求出人数,根据人数求出m、n,根据表示“足球”的百分比求出扇形的圆心角.详解:由图①和图②可知,喜欢篮球的人数是12人,占30%,12÷30%=40,则九(1)班的学生人数为40,A正确;4÷40=10%,则m的值为10,B正确;1−40%−30%−10%=20%,n的值为20,C正确;360°×20%=72°,D错误,故选:D.点睛:本题主要考查了条形统计图,扇形统计图,解题关键在于理解条形统计图和扇形统计图.9、D【解析】试题分析:直线l与y轴的交点(0,-3),而y=a为平行于x轴的直线,观察图象可得,当a<-3时,直线l与y=a的交点在第四象限.故选D考点:数形结合思想,一次函数与一次方程关系10、B【解析】
根据二次根式的运算法则,逐一计算即可得解.【详解】A选项,,错误;B选项,,正确;C选项,,错误;D选项,,错误;故答案为B.【点睛】此题主要考查二次根式的运算,熟练掌握,即可解题.11、C【解析】
试题分析:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AE=AB,∵AD=AB,∴AE=AD,又∠ABE=∠AHD=90°∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=(180°﹣45°)=67.5°,∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED,故①正确;∵∠AHB=(180°﹣45°)=67.5°,∠OHE=∠AHB(对顶角相等),∴∠OHE=∠AED,∴OE=OH,∵∠OHD=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠OHD=∠ODH,∴OH=OD,∴OE=OD=OH,故②正确;∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD,又BE=DH,∠AEB=∠HDF=45°∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正确;由上述①、②、③可得CD=BE、DF=EH=CE,CF=CD-DF,∴BC-CF=(CD+HE)-(CD-HE)=2HE,所以④正确;∵AB=AH,∠BAE=45°,∴△ABH不是等边三角形,∴AB≠BH,∴即AB≠HF,故⑤错误;综上所述,结论正确的是①②③④共4个.故选C.【点睛】考点:1、矩形的性质;2、全等三角形的判定与性质;3、角平分线的性质;4、等腰三角形的判定与性质12、A【解析】
根据等式的性质1,等式的两边都加或减同一个整式,结果不变,根据等式的性质1,等式的两边都乘或除以同一个不为零的整式,结果不变,可得答案.【详解】①根据等式的性质1,等式的两边都乘同一个不为零的整式x﹣1,结果不变;②根据去括号法则;③根据等式的性质1,等式的两边都加同一个整式3﹣x,结果不变;④根据合并同类项法则.根据等式基本性质的是①③.故选A.【点睛】本题考查了等式的性质,利用了等式的性质1,等式的性质1.二、填空题(每题4分,共24分)13、4.1【解析】
竹子折断后刚好构成一直角三角形,设竹子折断处离地面的高度是x尺,则斜边为(10-x)尺.利用勾股定理解题即可.【详解】解:1丈=10尺,
设折断处离地面的高度为x尺,则斜边为(10-x)尺,
根据勾股定理得:x2+32=(10-x)2
解得:x=4.1.
答:折断处离地面的高度为4.1尺.
故答案为:4.1.【点睛】此题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题.14、【解析】
根据折叠的性质及相似三角形的判定与性质及勾股定理即可求解.【详解】∵将矩形沿对角线折叠,使点翻折到点处,∴∠BCA=∠ECA,AE=AB=CD,EC=BC=AD,∵矩形ABCD的对边AD∥BC,∴∠DAC=∠BCA,∴∠ECA=∠DAC,设AD与CE相交于F,则AF=CF,∴AD-AF=CE-CF,即DF=EF,∴又∠AFC=∠DFE,∴△ACF∽△DEF,∴设DF=x,则AF=FC=3x,在Rt△CDF中,CD=又BC=AD=AF+DF=4x,∴【点睛】此题主要考查相似三角形与矩形的应用,解题的关键是熟知勾股定理、矩形的性质及相似三角形的判定与性质.15、14【解析】
根据题意可得和的高是相等的,再根据,可得的高的比值,进而可得的比值,再计算DF的长.【详解】解:根据题意可得和的高是相等的故答案为14.【点睛】本题主要考查三角形的相似比等于高的比,这是一个重要的考点,必须熟练掌握.16、14【解析】
根据甲权平均数公式求解即可.【详解】(4×13+7×14+4×15)÷15=14岁.故答案为:14.【点睛】本题重点考查了加权平均数的计算公式,希望同学们要牢记公式,并能够灵活运用.数据x1、x2、……、xn的加权平均数:(其中w1、w2、……、wn分别为x1、x2、……、xn的权数).17、1.08×10-5【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0000108=1.08×10-5.故答案为1.08×10-5.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.18、1.【解析】
直接利用分式的值为零则分子为零,分母不为零进而得出答案.【详解】解:∵分式的值为0,
∴1x-4=0且x-1≠0,
解得:x=1.
故答案为:1.【点睛】本题考查分式的值为零的条件,正确把握分式的定义是解题关键.三、解答题(共78分)19、(1)400,100;(2)36°;(3)81.6万人【解析】
(1)由等级C的人数除以占的百分比,得出调查总人数即可,进而确定出等级B与等级D的人数,进而求出m与n的值;(2)由D占的百分比,乘以360即可得到结果;(3)根据题意列式计算即可得到结论.【详解】解:(1)m=140÷14%×40%=400;n=140÷14%﹣280﹣400﹣140﹣80=100;条形统计图如下:故答案为:400,100;(2)扇形统计图中“D”所对应的圆心角的度数是×360°=36°;故答案为:36°;(3)×120=81.6万人,答:其中将“电脑上网”和“手机上网”作为“获取新闻的最主要途径”的总人数81.6万人【点睛】此题考查统计表,扇形统计图,条形统计图,解题关键在于看懂图中数据20、(1);(2)且;(3)【解析】
(1)根据一次函数平移的规律列方程组求解;(2)将两点的坐标代入解析式得出方程组,根据方程组可得出a,b的等量关系式,然后根据b的取值范围,可求出a的取值范围,另外注意一次函数中二次项系数2a-3≠0的限制条件;(3)先根据点P的坐标求出动点P所表示的直线表达式,再根据直线与平行得出结果.【详解】解:(1)依题意得,.(2)过点和点,两式相减得;解法一:,当时,;当时,.,随的增大而增大且,.,.且.解法二:,,解得.,∴.且.(3)设,.消去得,动点的图象是直线.不在上,与平行,,.【点睛】本题考查一次函数的图像与性质,以及一次函数平移的规律,掌握基本的性质是解题的关键.21、【解析】
先变形,再分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】解:【点睛】本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程.22、(1)a=2,b=1,c=3;(2)能,1+1.【解析】
(1)根据非负数的性质列式求解即可;(2)根据三角形的任意两边之和大于第三边进行验证即可.【详解】解:(1)根据题意得,a-=0,b-1=0,c-3=0,解得a=2,b=1,c=3;(2)能.∵2+3=1>1,∴能组成三角形,三角形的周长=2+1+3=1+1.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0,三角形的三边关系.23、-5【解析】
根据分式的运算法则即可求出答案.【详解】原式=[+]÷=(+)•x=x﹣1+x﹣2=2x﹣3由于x≠0且x≠1且x≠﹣2,所以x=﹣1,原式=﹣2﹣3=﹣5【点睛】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.24、(1)(2),,,【解析】
(1)根据题意求得点、、、的坐标,进而求得直线和直线解析式.过点作轴垂线交于点,设点横坐标为,即能用表示、的坐标进而表示的长.由得到关于的二次函数,即求得为何值时面积最大,求得此时点坐标.把点向上平移的长,易证四边形是平行四边形,故有.在直线的上方以为斜边作等腰,则有.所以,其中的长为定值,易得当点、、在同一直线上时,线段和的值最小.又点是动点,,由垂线段最短可知过点作的垂线段时,最短.求直线、解析式,联立方程组即求得点坐标,进而求得的长.(2)先求得,,的坐标,可得是等腰直角三角形,当绕逆时针旋转再沿直线平移可得△,根据以,,,为顶点的四边形为菱形,可得,,,,即可求得的坐标,当绕顺时针旋转再沿直线平移可得△,根据以,,,为顶点的四边形为菱形,可得,,即可求得的坐标.【详解】解:(1)如图1,过点作轴于点,交于点,在上截取,连接,以为斜边在直线上方作等腰,过点作于点时,时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工业园区施工现场消防安全方案
- 文化活动“小单元作战”组织方案
- 消防安全隐患整改方案
- 亲子阅读启蒙活动方案
- 物流园区停车管理方案
- 物流中心内部道路施工方案
- 旅游景区夜间景观照明方案
- 福建省漳州市2024-2025学年高三上学期第一次教学质量检测生物试题 (解析版)
- 商品砼的市场需求分析及供应方案
- 2023年新型分子筛系列产品项目成效分析报告
- 北京燃气公司招聘考试试题
- 四年级数学(四则混合运算)计算题专项练习与答案
- SpringMVC开发技术(习题卷1)
- 2024年江苏盐城市燕舞集团有限公司招聘笔试参考题库含答案解析
- 《合理使用零花钱》课件
- 公交站台改造可行性方案
- 初中九年级英语课件Task My favourite film star
- 如何撰写护理科研论文课件
- 中小学科普小学生安全急救科普知识
- 山地光伏30MW光伏发电项目施工组织设计
- 糖尿病足业务查房
评论
0/150
提交评论