江苏省扬州市江都区第二中学2024年数学八年级下册期末预测试题含解析_第1页
江苏省扬州市江都区第二中学2024年数学八年级下册期末预测试题含解析_第2页
江苏省扬州市江都区第二中学2024年数学八年级下册期末预测试题含解析_第3页
江苏省扬州市江都区第二中学2024年数学八年级下册期末预测试题含解析_第4页
江苏省扬州市江都区第二中学2024年数学八年级下册期末预测试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省扬州市江都区第二中学2024年数学八年级下册期末预测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图,直线y=kx+b交x轴于点A(﹣2,0),直线y=mx+n交x轴于点B(5,0),这两条直线相交于点C(1,p),则不等式组的解集为()A.x<5 B.x<﹣2 C.﹣2<x<5 D.﹣2<x<12.如图,平行四边形中,平分,交于点,且,延长与的延长线交于点,连接,.下列结论:①;②是等边三角形;③;④;⑤中正确的有()A.1个 B.2个 C.3个 D.4个3.一辆汽车以50的速度行驶,行驶的路程与行驶的时间之间的关系式为,其中变量是()A.速度与路程 B.速度与时间 C.路程与时间 D.速度4.下列字母中既是中心对称图形又是轴对称图形的是()A. B. C. D.5.下列长度的四根木棒,能与长度分别为2cm和5cm的木棒构成三角形的是()A.3 B.4 C.7 D.106.某中学书法兴趣小组10名成员的年龄情况如下表:年龄/岁14151617人数3421则该小组成员年龄的众数和中位数分别是()A.15,15 B.16,15 C.15,17 D.14,157.已知四边形ABCD中,AB∥CD,添加下列条件仍不能判断四边形ABCD是平行四边形的是()A.AB=CD B.AD=BC C.AD∥BC D.∠A+∠B=180°8.在菱形中,,点为边的中点,点与点关于对称,连接、、,下列结论:①;②;③;④,其中正确的是()A.①② B.①②③ C.①②④ D.①②③④9.近几年,手机支付用户规模增长迅速,据统计2015年手机支付用户约为3.58亿人,连续两年增长后,2017年手机支付用户达到约5.27亿人.如果设这两年手机支付用户的年平均增长率为x,则根据题意可以列出方程为()A. B. C. D.10.与是同类二次根式的是()A. B. C. D.二、填空题(每小题3分,共24分)11.小明用100元钱去购买笔记本和钢笔共30件,已知每本笔记本2元,每枝钢笔5元,那么小明最多能买________枝钢笔.12.如图,已知直线,直线m、n与a、b、c分别交于点A、C、E和B、D、F,如果,,,那么______.13.如图,直线交轴于点,交轴于点,是直线上的一个动点,过点作轴于点,轴于点,的长的最小值为__________.14.公路全长为skm,骑自行车t小时可到达,为了提前半小时到达,骑自行车每小时应多走_____________.15.已知直线与直线平行且经过点,则______.16.数据1,4,5,6,4,5,4的众数是___.17.如图,在直角坐标系中,正方形A1B1C1O、A2B2C2C1、A3B3C3C2、…、AnBnCnCn-1的顶点A1、A2、A3、…、An均在直线y=kx+b上,顶点C1、C2、C3、…、Cn在x轴上,若点B1的坐标为(1,1),点B2的坐标为(3,2),那么点A4的坐标为,点An的坐标为.18.如图,在▱ABCD中,E为CD的中点,连接AE并延长,交BC的延长线于点G,BF⊥AE,垂足为F,若AD=AE=1,∠DAE=30°,则EF=_____.三、解答题(共66分)19.(10分)如果一个三角形满足条件:三角形的一个角与菱形的一个角重合,且菱形的这个角的对角顶点在三角形的这个角的对边上,则称这个菱形为该三角形的“亲密菱形”.如题(1),菱形AEFD为△ABC的“亲密菱形”.在图(2)中,请以∠BAC为重合角用直尺和圆规作出△ABC的“亲密菱形”AEFD.20.(6分)下表给出三种上宽带网的收费方式.收费方式月使用费/元包时上网时间/超时费/(元/)不限时设月上网时间为,方式的收费金额分别为,直接写出的解析式,并写出自变量的取值范围;填空:当上网时间时,选择方式最省钱;当上网时间时,选择方式最省钱;当上网时间时,选择方式最省钱;21.(6分)某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的跳水运动员人数为,图①中m的值为;(2)求统计的这组跳水运动员年龄数据的平均数、众数和中位数.22.(8分)已知张强家、体育场、文具店在同一直线上,下面的图象反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家.图中表示时间,表示张强离家的距离.根据图象解答下列问题:(1)体育场离张强家多远?张强从家到体育场用了多少时间?(2)体育场离文具店多远?(3)张强在文具店停留了多少时间?(4)求张强从文具店回家过程中与的函数解析式.23.(8分)如图,直线与x轴、y轴分别交于点A和点B,点C在线段AB上,点D在y轴的负半轴上,C、D两点到x轴的距离均为1.(1)点C的坐标为,点D的坐标为;(1)点P为线段OA上的一动点,当PC+PD最小时,求点P的坐标.24.(8分)已知:如图,四边形ABCD是平行四边形,CE∥BD交AD的延长线于点E,CE=AC.(1)求证:四边形ABCD是矩形;(2)若AB=4,AD=3,求四边形BCED的周长.25.(10分)已知关于x的一元二次方程x2﹣(n+3)x+3n=1.求证:此方程总有两个实数根.26.(10分)如图,在等腰梯形ABCD中,,,,.点Р从点B出发沿折线段以每秒5个单位长的速度向点C匀速运动;点Q从点C出发沿线段CB方向以每秒3个单位长的速度匀速运动,过点O向上作射线OKIBC,交折线段于点E.点P、O同时开始运动,为点Р与点C重合时停止运动,点Q也随之停止.设点P、Q运动的时间是t秒.(1)点P到达终点C时,求t的值,并指出此时BQ的长;(2)当点Р运动到AD上时,t为何值能使?(3)t为何值时,四点P、Q、C、E成为一个平行四边形的顶点?(4)能为直角三角形时t的取值范围________.(直接写出结果)(注:备用图不够用可以另外画)

参考答案一、选择题(每小题3分,共30分)1、B【解析】

根据图象可得,y=kx+b<0,则x<﹣2,y=mx+n>0,则x<5,即可求解.【详解】解:根据图象可得,y=kx+b<0,则x<﹣2,y=mx+n>0,则x<5,∴不等式组的解集为:x<﹣2,故选:B.【点睛】本题考查了一次函数与一元一次不等式,体现了数形结合的思想方法,准确的确定出x的值,是解答本题的关键.2、C【解析】

由平行四边形的性质得出AD∥BC,AD=BC,由AE平分∠BAD,可得∠BAE=∠DAE,可得∠BAE=∠BEA,得AB=BE,由AB=AE,得到△ABE是等边三角形,②正确;则∠ABE=∠EAD=60°,由SAS证明△ABC≌△EAD,①正确;由△FCD与△ABD等底(AB=CD)等高(AB与CD间的距离相等),得出S△FCD=S△ABD,由△AEC与△DEC同底等高,所以S△AEC=S△DEC,得出S△ABE=S△CEF,⑤正确.【详解】解:∵四边形ABCD是平行四边形,

∴AD∥BC,AD=BC,

∴∠EAD=∠AEB,

又∵AE平分∠BAD,

∴∠BAE=∠DAE,

∴∠BAE=∠BEA,

∴AB=BE,

∵AB=AE,

∴△ABE是等边三角形;

②正确;

∴∠ABE=∠EAD=60°,

∵AB=AE,BC=AD,在△ABC和△EAD中,,

∴△ABC≌△EAD(SAS);

①正确;

∵△FCD与△ABC等底(AB=CD)等高(AB与CD间的距离相等),

∴S△FCD=S△ABC,

又∵△AEC与△DEC同底等高,

∴S△AEC=S△DEC,

∴S△ABE=S△CEF;

⑤正确;

若AD与AF相等,即∠AFD=∠ADF=∠DEC,

即EC=CD=BE,

即BC=2CD,

题中未限定这一条件,

∴③④不一定正确;

故选C.【点睛】本题考查了平行四边形的性质、等边三角形的判定与性质、全等三角形的判定与性质.此题比较复杂,注意将每个问题仔细分析.3、C【解析】

在函数中,给一个变量x一个值,另一个变量y就有对应的值,则x是自变量,y是因变量,据此即可判断.【详解】解:由题意的:s=50t,路程随时间的变化而变化,则行驶时间是自变量,行驶路程是因变量;故选:C.【点睛】此题主要考查了自变量和因变量,正确理解自变量与因变量的定义,是需要熟记的内容.4、A【解析】

根据中心对称图形及轴对称图形的概念即可解答.【详解】选项A是轴对称图形,也是中心对称图形;选项B是轴对称图形,不是中心对称图形;选项C不是轴对称图形,也不是中心对称图形;选项D不是轴对称图形,是中心对称图形.故选A.【点睛】本题考查了中心对称图形及轴对称图形的概念,熟知中心对称图形及轴对称图形的判定方法是解决问题的关键.5、B【解析】5-2=3,5+2=7,只有4在这两个数之间,故能构成三角形的只有B选项的木棒,故选B.点睛:本题主要考查三角形三边的关系,能正确地应用“两边之和大于第三边,两边之差小于第三边”是解题的关键.6、A【解析】

10名成员的年龄中,15岁的人数最多,因此众数是15岁,从小到大排列后,处在第5,6位两个数的平均数是15岁,因此中位数是15岁.【详解】解:15岁出现的次数最多,是4次,因此众数是15岁,从小到大排列后处在第5、6位的都是15,因此中位数是15岁.故选:A.【点睛】本题考查中位数、众数的意义及求法,出现次数最多的数是众数,从小到大排列后处在中间位置的一个或两个数的平均数是中位数.7、B【解析】

平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.【详解】解:根据平行四边形的判定,A、C、D均符合是平行四边形的条件,B则不能判定是平行四边形.故选B.【点睛】此题主要考查了学生对平行四边形的判定的掌握情况.对于判定定理:“一组对边平行且相等的四边形是平行四边形.”应用时要注意必须是“一组”,而“一组对边平行且另一组对边相等”的四边形不一定是平行四边形.8、C【解析】

如图,设DE交AP于0,根据菱形的性质、翻折不变性-判断即可解决问题;【详解】解:如图,设DE交AP于O.∵四边形ABCD是菱形∴DA=DC=AB∵A.P关于DE对称,∴DE⊥AP,OA=OP∴DA=DP∴DP=CD,故①正确∵AE=EB,AO=OP∴OE//PB,∴PB⊥PA∴∠APB=90°∴,故②正确若∠DCP=75°,则∠CDP=30°∵LADC=60°∴DP平分∠ADC,显然不符合题意,故③错误;∵∠ADC=60°,DA=DP=DC∴∠DAP=∠DPA,∠DCP=∠DPC,∠CPA=(360°-60°)=150°,故④正确.故选:C【点睛】本题考查菱形的性质、轴对称的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.9、C【解析】

如果设这两年手机支付用户的年平均增长率为,那么2016年手机支付用户约为亿人,2017年手机支付用户约为亿人,而2017年手机支付用户达到约亿人,根据2017年手机支付用户的人数不变,列出方程.【详解】设这两年手机支付用户的年平均增长率为,依题意得:.故选:.【点睛】本题考查的是由实际问题抽象出一元二次方程-平均增长率问题.解决这类问题所用的等量关系一般是:.10、D【解析】

把各个二次根式化为最简二次根式,再根据同类二次根式的概念进行判断即可.【详解】解:A.与不是同类二次根式,此选项不符合题意;B.与不是同类二次根式,此选项不符合题意;C.与不是同类二次根式,此选项不符合题意;D.与是同类二次根式,此选项符合题意;故选:D.【点睛】本题考查的知识点是同类二次根式,需注意要把二次根式化简后再看被开方数是否相同.二、填空题(每小题3分,共24分)11、1【解析】

解:设小明一共买了x本笔记本,y支钢笔,根据题意,可得,可求得y≤因为y为正整数,所以最多可以买钢笔1支.故答案为:1.12、【解析】

由直线a∥b∥c,根据平行线分线段成比例定理,即可得,又由AC=3,CE=5,DF=4,即可求得BD的长.【详解】解:由直线a∥b∥c,根据平行线分线段成比例定理,即可得,又由AC=3,CE=5,DF=4可得:解得:BD=.故答案为.【点睛】此题考查了平行线分线段成比例定理.题目比较简单,解题的关键是注意数形结合思想的应用.13、4.3【解析】

连接OC,易知四边形OECD是矩形,所以OC=DE,当当OC⊥AB时,OC最短,即DE最短,在Rt△ABO中可以利用面积法求解OC最小值.【详解】解:连接OC,

∵∠CEO=∠EOD=∠ODC,

∴四边形OECD是矩形.

∴DE=OC.

当OC⊥AB时,OC最短,即DE最短.

∵直线交y轴于点A(0,3),交x轴于点B(-1,0),

∴OA=3,OB=1.

在Rt△AOB中,利用勾股定理可得

AB===2.

当OC与AB垂直时,

AO×BO=AB×OC,即3×1=2×OC,解得OC=4.3.

所以DE长的最小值为4.3.

故答案为:4.3.【点睛】本题考查一次函数图象上的点的坐标特征、勾股定理、矩形的判定和性质,解决点到直线的最短距离问题,一般放在三角形中利用面积法求高.14、-【解析】公路全长为skm,骑自行车t小时可到达,则速度为若提前半小时到达,则速度为则现在每小时应多走()15、1【解析】

根据平行直线的解析式的k值相等可得k=-1,再将经过的点的坐标代入求解即可.【详解】解:∵直线与直线平行,∴k=-1.∴直线的解析式为.∵直线经过点(1,1),∴b=4.∴k+b=1.【点睛】本题考查了两直线平行问题,主要利用了两平行直线的解析式的k值相等,需熟记.16、1【解析】

众数是出现次数最多的数,据此求解即可.【详解】解:数据1出现了3次,最多,所以众数为1,故答案为:1.【点睛】此题考查了众数的知识.众数是这组数据中出现次数最多的数.17、A4(7,8);An(2n-1-1,2n-1).【解析】

∵点B1的坐标为(1,1),点B2的坐标为(3,2)∴由题意知:A1的坐标是(0,1),A2的坐标是:(1,2),∴直线A1A2的解析式是y=x+1.纵坐标比横坐标多1.∵A1的纵坐标是:1=20,A1的横坐标是:0=20-1;A2的纵坐标是:1+1=21,A2的横坐标是:1=21-1;A3的纵坐标是:2+2=4=22,A3的横坐标是:1+2=3=22-1,A4的纵坐标是:4+4=8=23,A4的横坐标是:1+2+4=7=23-1,即点A4的坐标为(7,8).∴An的纵坐标是:2n-1,横坐标是:2n-1-1,即点An的坐标为(2n-1-1,2n-1).故答案为(7,8);(2n-1-1,2n-1).18、﹣1【解析】

首先证明△ADE≌△GCE,推出EG=AE=AD=CG=1,再求出FG即可解决问题.【详解】∵四边形ABCD是平行四边形,∴AD∥BG,AD=BC,∴∠DAE=∠G=30°,∵DE=EC,∠AED=∠GEC,∴△ADE≌△GCE,∴AE=EG=AD=CG=1,在Rt△BFG中,∵FG=BG•cos30°=,∴EF=FG-EG=-1,故答案为-1.【点睛】本题考查平行四边形的性质、全等三角形的判定和性质、锐角三角函数等知识,解题的关键是熟练掌握基本知识.三、解答题(共66分)19、见解析,【解析】

由菱形的性质可知AF是∠BAC的平分线,故点F在∠BAC的平分线与BC的交点上,作∠BAC的角平分线AF交BC于F,作线段AF的垂直平分线MN交AC于D,交AB于E,四边形AEFD即为所求.【详解】解:如图,菱形AEFD即为所求.【点睛】本题考查作图-复杂作图,菱形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20、;;;不超过;超过而不超过;超过.【解析】

(1)根据表格写出函数的解析式,注意分段表示函数的解析式.(2)根据函数的解析数求解的交点,进而可得最省钱的取值范围.【详解】解:根据一次函数y=3x-65与y=40的交点即可得到A最省钱的时间;解得所以当不超过时,选择方式最省钱同理可得计算出直线y=3x-140与y=100的交点即可得到最省钱解得所以当超过而不超过,选择方式B最省钱根据前面两问可得当超过.选择方式C最省钱【点睛】本题主要考查一次函数的应用问题,关键在于求解最省钱的取值范围,着重在于求解交点坐标.21、(1)40人;1;(2)平均数是15;众数16;中位数15.【解析】

(1)用13岁年龄的人数除以13岁年龄的人数所占的百分比,即可得本次接受调查的跳水运动员人数;用16岁年龄的人数除以本次接受调查的跳水运动员人数即可求得m的值;(2)根据统计图中给出的信息,结合求平均数、众数、中位数的方法求解即可.【详解】解:(1)4÷10%=40(人),m=100-27.5-25-7.5-10=1;故答案为40,1.(2)观察条形统计图,∵,∴这组数据的平均数为15;∵在这组数据中,16出现了12次,出现的次数最多,∴这组数据的众数为16;∵将这组数据按照从小到大的顺序排列,其中处于中间的两个数都是15,有,∴这组数据的中位数为15.【点睛】本题考查了条形统计图,扇形统计图,掌握平均数、众数和中位数的定义是解题的关键.22、(1)体育场离张强家,张强从家到体育场用了;(2)体育场离文具店;(3)张强在文具店停留了;(4)()【解析】

(1)根据y轴的分析可得体育场离张强家的距离,根据x轴可以分析出张强从家到体育场用了多少时间.(2)通过图象可得张强在45min的时候,到达了文具店,通过图象观察体育场离文具店的距离为2.5-1.5=1.(3)根据图象可得张强在45min到65min之间是运动的路程为0,因此可得在文具店停留的时间.(4)已知在65min是路程为1.5,100min是路程为0,采用待定系数法计算可得一次函数的解析式.【详解】解:(1)体育场离张强家,张强从家到体育场用了(2)体育场离文具店(3)张强在文具店停留了(4)设张强从文具店回家过程中与的函数解析式为,将点,代入得,解得,∴()【点睛】本题主要考查图象的分析识别能力,这是考试的热点,应当熟练掌握,注意第四问要写出自变量的范围.23、(1)(-3,1);(0,-1)(1)P(,0)【解析】

(1)根据直线与C、D两点到x轴的距离均为1即可求出C,D的坐标;(1)连接CD,求出直线CD与x轴的交点即为P点.【详解】(1)令y=1,解得x=-3,∴点C的坐标为(-3,1)令y=-1,解得x=0,∴点D的坐标为(0,-1)(1)如图,连接CD,求出直线CD与x轴的交点即为P点.设直线CD的解析式为y=kx+b,把(-3,1),(0,1)代入得解得∴y=x-1令y=0,解得x=∴P(,0)【点睛】此题主要考查一次函数的图像与性质,解题的关键是熟知待定系数法确定函数关系式.24、(1)详见解析;(2)1.【解析】

(1)根据已知条件推知四边形BCED是平行四边形,则对边相等:CE=BD,依据等量代换得到对角线AC=BD,则平行四边形ABCD是矩形;

(2)通过勾股定理求得BD的长度,再利用四边形BCED是平行四边形列式计算即可得解.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AE∥BC.∵CE∥BD,∴四边形BCED是平行四边形.∴CE=BD.∵CE=AC,∴AC=BD.∴□ABCD是矩形.(2)解:∵□ABCD是矩形,AB=4,AD=3,∴∠DAB=90°,BC=AD=3,∴.∵四边形BCED是平行四边形,∴四边形BCED的周长为2(BC+BD)=2×(3+5)=1.故答案为(1)详见解析;(2)1.【点睛】本题考查矩形的判定,平行四边形的判定与性质,勾股定理,熟记性质是解题的关键.25、见解析.【解析】

利用根的判别式△≥1时,进行计算即可【详解】△=,所以,方程总有两个实数根.【点睛】此题考查根的判别式,掌握运算法则是解题关键26、(2)秒,;(2)详见解析;(3);(4)或.【解析】

(2)把BA,AD,DC它们的和求出来再除以速度每秒5个单位就可以求出t的值,然后也可以求出BQ的长;(2)如图2,若PQ∥DC,又AD∥BC,则四边形PQCD为平行四边形,从而PD=QC,用t分别表示QC,BA,AP,然后就可以得出关于t的方程,解方程就可以求出t;(3)分情况讨论,当P在BA上运动时,E在CD上运动.0≤t≤20,QC的长度≤30,PE的长度>AD=75,QC<PE,此时不能构成以P、Q、C、E为顶点的平行四边形;当P点运动到AD上,E在AD上,且P在E的左侧时,P、Q、C、E为顶点的四边形可能是平行四边形,根据平行四边形的性质建立方程求出其解就可以得出结论;当P在E点的右侧且在AD上时,t≤25,P、Q、C、E为直角梯形,当P在CD上,E在AD上QE与PC不平行,P、Q、C、E不可能为平行四边形,(4)①当点P在BA(包括点A)上,即0<t≤20时,如图2.过点P作PG⊥BC于点G,则PG=PB•sinB=4t,又有QE=4t=PG,易得四边形PGQE为矩形,此时△PQE总能成为直角三角形②当点P、E都在AD(不包括点A但包括点D)上,即20<t≤25时,如图2.由QK⊥BC和AD∥BC可知,此时,△PQE为直角三角形,但点P、E不能重合,即5t-50+3t-30≠75,解得t≠.③当点P在DC上(不包括点D但包括点C),即25<t≤35时,如图3.由ED>25×3-30=45,可知,点P在以QE=40为直径的圆的外部,故∠EPQ不会是直角.由∠PEQ<∠DEQ,可知∠PEQ一定是锐角.对于∠PQE,∠PQE≤∠CQE,只有当点P

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论