2024届内蒙古阿拉善八年级下册数学期末学业水平测试试题含解析_第1页
2024届内蒙古阿拉善八年级下册数学期末学业水平测试试题含解析_第2页
2024届内蒙古阿拉善八年级下册数学期末学业水平测试试题含解析_第3页
2024届内蒙古阿拉善八年级下册数学期末学业水平测试试题含解析_第4页
2024届内蒙古阿拉善八年级下册数学期末学业水平测试试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届内蒙古阿拉善八年级下册数学期末学业水平测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,某人从点A出发,前进8m后向右转60°,再前进8m后又向右转60°,按照这样的方式一直走下去,当他第一次回到出发点A时,共走了()A.24m B.32m C.40m D.48m2.如图,正比例函数y1=-2x的图像与反比例函数y2=kx的图像交于A、B两点.点C在x轴负半轴上,AC=AO,△A.-4 B.﹣8 C.4 D.83.如图,正方形的边长为10,,,连接,则线段的长为()A. B. C. D.4.随机抽取10名八年级同学调查每天使用零花钱的情况,结果如下表,则这10名同学每天使用零花钱的中位数是()每天使用零花钱的情况

单位(元)2345人数1522A.2元 B.3元 C.4元 D.5元5.下列式子因式分解正确的是()A.x2+2x+2=(x+1)2+1 B.(2x+4)2=4x2+16x+16C.x2﹣x+6=(x+3)(x﹣2) D.x2﹣1=(x+1)(x﹣1)6.一次函数y=kx+b(k≠0)的图象如图所示,当y>0时,x的取值范围是()A.x>0 B.x<0 C.x>-1 D.x>27.如图,已知点E、F分别是△ABC的边AB、AC上的点,且EF∥BC,点D是BC边上的点,AD与EF交于点H,则下列结论中,错误的是()A. B. C. D.8.在边长为5的正方形ABCD中,以A为一个顶点,另外两个顶点在正方形ABCD的边上作等腰三角形,且含边长为4的所有大小不同的等腰三角形的个数为()A.6 B.5 C.4 D.39.下列各式的计算中,正确的是()A. B. C. D.10.若一次函数y=kx+17的图象经过点(-3,2),则k的值为()A.-6B.6C.-5D.511.下列图形都是由相同的小正方形按照一定规律摆放而成,其中第1个图共有3个小正方形,第2个图共有8个小正方形,第3个图共有15个小正方形,第4个图共有24个小正方形,照此规律排列下去,则第8个图中小正方形的个数是()A.48 B.63 C.80 D.9912.为了比较某校同学汉字听写谁更优秀,语文老师随机抽取了8次听写情况,发现甲乙两人平均成绩一样,甲、乙的方差分别为1.9和2.3,则下列说法正确的是()A.甲的发挥更稳定 B.乙的发挥更稳定C.甲、乙同学一样稳定 D.无法确定甲、乙谁更稳定二、填空题(每题4分,共24分)13.如图,一块矩形铁皮的长是宽的2倍,将这个铁皮的四角各剪去一个边长为3cm的小正方形,做成一个无盖的盒子,若盒子的容积是240cm3,则原铁皮的宽为______cm.14.计算:=_______________.15.如图,在矩形ABCD中,AB=8,BC=10,E是AB上的一点,将矩形ABCD沿CE折叠后,点B落在AD边的点F上,则AE的长为_________.16.将50个数据分成5组,第1、2、3、4组的频数分别是2、8、10、15,则第5组的频率为_________17.如图,在中,,,,为边上一动点,于,于,为的中点,则的最小值为________.18.如图,△ACB和△DCE都是等腰直角三角形,CA=CB,CD=CE,∠ACB=∠DCE=90°,△ACB的顶点A在△DCE的斜边DE上,且AD=,AE=3,则AC=_____.三、解答题(共78分)19.(8分)(1)计算:(2)先化简,再求值:,其中20.(8分)某商场计划购进一批书包,经市场调查发现:某种进货价格为30元的书包以40元的价格出售时,平均每月售出600个,并且书包的售价每提高1元,某月销售量就减少10个.(1)若售价定为42元,每月可售出多少个?(2)若书包的月销售量为300个,则每个书包的定价为多少元?(3)当商场每月有10000元的销售利润时,为体现“薄利多销”的销售原则,你认为销售价格应定为多少?21.(8分)如图,把矩形OABC放入平面直角坐标系xO中,使OA、OC分别落在x、y轴的正半轴上,其中AB=15,对角线AC所在直线解析式为y=﹣x+b,将矩形OABC沿着BE折叠,使点A落在边OC上的点D处.(1)求点B的坐标;(2)求EA的长度;(3)点P是y轴上一动点,是否存在点P使得△PBE的周长最小,若存在,请求出点P的坐标,若不存在,请说明理由.22.(10分)先化简再求值:(x+y)2﹣x(x+y),其中x=2,y=﹣1.23.(10分)一辆轿车从甲地驶往乙地,到达乙地后立即返回甲地,速度是原来的1.5倍,往返共用t小时.一辆货车同时从甲地驶往乙地,到达乙地后停止.两车同时出发,匀速行驶,设轿车行驶的时间为x(h),两车离开甲地的距离为y(km),两车行驶过程中y与x之间的函数图象如图所示.(1)轿车从乙地返回甲地的速度为km/t,t=h

;(2)求轿车从乙地返回甲地时y与x之间的函数关系式;(3)当轿车从甲地返回乙地的途中与货车相遇时,求相遇处到甲地的距离.24.(10分)如果关于x的方程1+=的解,也是不等式组的解,求m的取值范围.25.(12分)在直角坐标平面里,梯形ABCD各顶点的位置如图所示,图中每个小正方形方格的边长为1个单位长度.(1)求梯形ABCD的面积;(2)如果把梯形ABCD在坐标平面里先向右平移1个单位,然后向下平移2个单位得到梯形A1B1C1D1,求新顶点A1,B1,C1,D1的坐标.26.已知一次函数y=kx+b的图象经过点(3,-3),且与直线y=4x-3的交点在x轴上.(1)求这个一次函数的解析式.(2)此函数的图象经过哪几个象限?(3)求此函数的图象与坐标轴围成的三角形的面积.

参考答案一、选择题(每题4分,共48分)1、D【解析】

从A点出发,前进8m后向右转60°,再前进8m后又向右转60°,…,这样一直走下去,他第一次回到出发点A时,所走路径为正多边形,根据正多边形的外角和为360°,判断多边形的边数,再求路程.【详解】解:依题意可知,某人所走路径为正多边形,设这个正多边形的边数为n,则60n=360,解得n=6,故他第一次回到出发点A时,共走了:8×6=48(m).故选:D.【点睛】本题考查了多边形的外角和,正多边形的判定与性质.关键是根据每一个外角判断多边形的边数.2、B【解析】

根据等腰三角形的性质及反比例函数k的几何意义即可求解.【详解】过点A作AE⊥x轴,∵AC=AO,∴CE=EO,∴S△ACO=2S△ACE∵△ACO的面积为8.∴k=8,∵反比例函数过二四象限,∴k=-8故选B【点睛】此题主要考查反比例函数与几何综合,解题的关键是熟知反比例函数k的性质.3、B【解析】

延长DH交AG于点E,利用SSS证出△AGB≌△CHD,然后利用ASA证出△ADE≌△DCH,根据全等三角形的性质求出EG、HE和∠HEG,最后利用勾股定理即可求出HG.【详解】解:延长DH交AG于点E∵四边形ABCD为正方形∴AD=DC=BA=10,∠ADC=∠BAD=90°在△AGB和△CHD中∴△AGB≌△CHD∴∠BAG=∠DCH∵∠BAG+∠DAE=90°∴∠DCH+∠DAE=90°∴CH2+DH2=82+62=100=DC2∴△CHD为直角三角形,∠CHD=90°∴∠DCH+∠CDH=90°∴∠DAE=∠CDH,∵∠CDH+∠ADE=90°∴∠ADE=∠DCH在△ADE和△DCH中∴△ADE≌△DCH∴AE=DH=6,DE=CH=8,∠AED=∠DHC=90°∴EG=AG-AE=2,HE=DE-DH=2,∠GEH=180°-∠AED=90°在Rt△GEH中,GH=故选B.【点睛】此题考查是正方形的性质、全等三角形的判定及性质和勾股定理,掌握正方形的性质、全等三角形的判定及性质和利用勾股定理解直角三角形是解决此题的关键.4、B【解析】

将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【详解】解:共10名同学,中位数是第5和第6的平均数,故中位数为3,

故选B.【点睛】本题考查中位数,正确理解中位数的意义是解题的关键.5、D【解析】

利用因式分解定义,以及因式分解的方法判断即可.【详解】解:A、x2+2x+2不能进行因式分解,故A错误;B、(2x+4)2=4x2+16x+16不符合因式分解的定义,故B错误;C、,等式左右不相等,故C错误;D、x2﹣1=(x+1)(x﹣1),正确故选:D.【点睛】本题考查了因式分解的概念及判断,掌握因式分解的定义是解题的关键.6、C【解析】

首先找到当y>0时,图象所在位置,再根据图象可直接得到答案.【详解】当y>0时,图象在x轴上方,

∵与x交于(-1,0),

∴y>0时,自变量x的取值范围是x>-1,

故选:C.【点睛】考查了一次函数与一元一次不等式,关键是能从图象中找到对应的直线.7、B【解析】

利用平行线分线段成比例定理及推论判断即可.平行线分线段成比例定理指的是两条直线被一组平行线所截,截得的对应线段的长度成比例.推论:平行于三角形一边的直线,截其他两边(或两边延长线)所得的对应线段成比例.【详解】解:∵EF∥BC,

∴,,=,

∴选项A,C,D正确,

故选B.【点睛】本题考查平行线分线段成比例定理及推论,解题的关键是熟练掌握基本知识.8、B【解析】

①以A为圆心,以4为半径作弧,交AD、AB两点,连接即可;②连接AC,在AC上,以A为端点,截取2个单位,过这个点作AC的垂线,交AD、AB两点,连接即可;③以A为端点在AB上截取4个单位,以截取的点为圆心,以4个单位为半径画弧,交BC一个点,连接即可;④连接AC,在AC上,以C为端点,截取2个单位,过这个点作AC的垂线,交BC、DC两点,然后连接A与这两个点即可;⑤以A为端点在AB上截取4个单位,再作着个线段的垂直平分线交CD一点,连接即可,⑥以A为端点在AD上截取4个单位,再作这条线段的垂直平分线交BC一点,连接即可(和⑤大小一样);⑦以A为端点在AD上截取4个单位,以截取的点为圆心,以4个单位为半径画弧,交CD一个点,连接即可(和③大小一样).【详解】解:满足条件的所有图形如图所示:共5个.

故选:B.【点睛】本题考查了正方形的性质,等腰三角形的判定,解题的关键是掌握等腰三角形的判定方法.9、B【解析】

根据同底数幂相除,底数不变指数相减;同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项分析判断后利用排除法求解.【详解】A、应为x4÷x4=1,故本选项错误;B、a2•a2=a4,正确;C、应为(a3)2=a6,故本选项错误;D、a2与a3不是同类项,不能合并,故本选项错误.故选:B.【点睛】本题主要考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方,很容易混淆,一定要记准法则才能做题.10、D【解析】

由一次函数经过(-3,2),故将x=-3,y=2代入一次函数解析式中,得到关于k的方程,求出方程的解即可得到k的值.【详解】由一次函数y=kx+17的图象经过点(-3,2),故将x=-3,y=2代入一次函数解析式得:2=-3k+17,解得:k=1,则k的值为1.故选D.【点睛】此题考查了待定系数法求一次函数解析式,灵活运用待定系数法是解本题的关键.11、C【解析】

解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论.【详解】∵第1个图共有3个小正方形,3=1×3;第2个图共有8个小正方形,8=2×34;第3个图共有15个小正方形,15=3×5;第4个图共有24个小正方形,24=4×6;…∴第8个图共有8×10=80个小正方形;故选C.【点睛】本题考查了规律型---图形类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.12、A【解析】

根据方差越小越稳定即可得出答案.【详解】∵1.9<2.3,∴甲的方差<乙的方差,∴甲的发挥更稳定,故选:A.【点睛】本题主要考查方差,掌握方差反映的是一组数据的波动情况,方差越大,数据越不稳定,方差越小,数据越稳定是解题的关键.二、填空题(每题4分,共24分)13、1.【解析】试题分析:设这块铁片的宽为xcm,则铁片的长为2xcm,由题意,得3(2x﹣6)(x﹣6)=240,解得x1=1,x2=﹣2(不合题意,舍去),答:这块铁片的宽为1cm.故答案为1.考点:一元二次方程的应用.14、1【解析】

根据实数的性质化简即可求解.【详解】=1+2=1故答案为:1.【点睛】此题主要考查实数的运算,解题的关键是熟知零指数幂与负指数幂的运算.15、1【解析】

首先求出DF的长度,进而求出AF的长度;根据勾股定理列出关于线段AE的方程即可解决问题.【详解】设AE=x,由题意得:FC=BC=10,BE=EF=8-x;∵四边形ABCD为矩形,∴∠D=90°,DC=AB=8,由勾股定理得:DF2=102-82=16,∴DF=6,AF=10-6=4;由勾股定理得:EF2=AE2+AF2,即(8-x)2=x2+42解得:x=1,即AE=1.故答案为:1.【点睛】该命题以正方形为载体,以翻折变换为方法,以考查勾股定理、全等三角形的性质为核心构造而成;解题的关键是灵活运用有关定理来分析、判断或解答.16、0.3【解析】

根据所有数据的频数和为总数量,可用减法求解第五组的评数,用频数除以总数即可.【详解】解:∵第1、2、3、4组的频数分别是2、8、10、15,∴50-2-8-10-15=15∴15÷50=0.3故答案为0.3.【点睛】此题主要考查了频率的求法,明确用频数除以总数求取频率是解题关键.17、1.2【解析】

∵在△ABC中,AB=3,AC=4,BC=5,∴AB2+AC2=BC2,即∠BAC=90°.又PE⊥AB于E,PF⊥AC于F,∴四边形AEPF是矩形,∴EF=AP.∵M是EF的中点,∴AM=EF=AP.因为AP的最小值即为直角三角形ABC斜边上的高,即2.4,∴AM的最小值是1.2.18、【解析】

由等腰三角形的性质可得AC=BC,DC=EC,∠DCE=∠ACB=90°,∠D=∠CED=45°,可证△ADC≌△BEC,可得AD=BE=,∠D=∠BEC=45°,由勾股定理可求AB=2,即可求AC的长。【详解】证明:如图,连接BE,

∵△ACB和△DCE都是等腰直角三角形

∴AC=BC,DC=EC,∠DCE=∠ACB=90°,∠D=∠CED=45°

∴∠DCA=∠BCE,且AC=BC,DC=EC,

∴△ADC≌△BEC(SAS)

∴AD=BE=,∠D=∠BEC=45°,

∴∠AEB=90°

∴AB==2

∵AB=BC

∴BC=,因为△ACB是等腰直角三角形,所以BC=AC=.【点睛】本题考查等腰直角三角形的性质、全等三角形的判定和性质,解题的关键是掌握等腰直角三角形的性质、全等三角形的判定和性质.三、解答题(共78分)19、(1)9−;(2).【解析】

(1)首先计算乘方,然后从左向右依次计算,求出算式的值是多少即可.(2)首先化简,然后把x的值代入化简后的算式即可.【详解】(1)=8+2−−1=9−(2)===x=4−2sin30°=4−2×=3∴原式==【点睛】此题考查实数的运算,分式的化简求值,零指数幂,负整数指数幂,解题关键在于掌握运算法则20、(1)580(个);(2)70(元);(3)为体现“薄利多销”的销售原则,我认为销售价格应定为50元.【解析】

(1)由“这种书包的售价每上涨1元,其销售量就减少10个”进行解答;

(2)根据“售价+月销量减少的个数÷10”进行解答;

(3)设销售价格应定为x元,根据“这种书包的售价每上涨1元,其销售量就减少10个”列出方程并解答.【详解】解:(1)当售价为42元时,每月可以售出的个数为600﹣10(42﹣40)=580(个);(2)当书包的月销售量为300个时,每个书包的价格为:40+(600﹣300)÷10=70(元);(3)设销售价格应定为x元,则(x﹣30)[600﹣10(x﹣40)]=10000,解得x1=50,x2=80,当x=50时,销售量为500个;当x=80时,销售量为200个,因此为体现“薄利多销”的销售原则,我认为销售价格应定为50元.【点睛】本题考查了一元二次方程的应用,解题的关键是分别表示出销量和单价,用销量乘以单价表示出利润即可.21、(1)B(9,11);(2)1;(3)存在,P(0,)【解析】

(1)根据点C的坐标确定b的值,利用待定系数法求出点A坐标即可解决问题;(2)在Rt△BCD中,BC=9,BD=AB=11,CD==12,OD=11﹣12=3,设DE=AE=x,在Rt△DEO中,根据DE2=OD2+OE2,构建方程即可解决问题;(3)如图作点E关于y轴的对称点E′,连接BE′交y轴于P,此时△BPE的周长最小.利用待定系数法求出直线BE′的解析式即可解决问题;【详解】解:(1)∵AB=11,四边形OABC是矩形,∴OC=AB=11,∴C(0,11),代入y=y=﹣x+b得到b=11,∴直线AC的解析式为y=﹣x+11,令y=0,得到x=9,∴A(9,0),B(9,11).(2)在Rt△BCD中,BC=9,BD=AB=11,∴CD==12,∴OD=11﹣12=3,设DE=AE=x,在Rt△DEO中,∵DE2=OD2+OE2,∴x2=32+(9﹣x)2,∴x=1,∴AE=1.(3)如图作点E关于y轴的对称点E′,连接BE′交y轴于P,此时△BPE的周长最小.∵E(4,0),∴E′(﹣4,0),设直线BE′的解析式为y=kx+b,则有解得,∴直线BE′的解析式为y=x+,∴P(0,).故答案为(1)B(9,11);(2)1;(3)存在,P(0,).【点睛】本题考查一次函数综合题、矩形的性质、翻折变换、勾股定理等知识,解题的关键是熟练掌握待定系数法解决问题,学会利用轴对称解决最短问题,属于中考压轴题.22、2.【解析】

根据整式乘法法则将式子化简,再代入求值,要注意二次根式的运算法则的应用.【详解】解:原式=2【点睛】本题考核知识点:二次根式化简求值.解题关键点:掌握乘法公式.23、(1)120;;(2)y=-120x+300;(3)100km.【解析】

(1)根据图象可得当x=小时时,据甲地的距离是120千米,即可求得轿车从甲地到乙地的速度,进而求得轿车从乙地返回甲地的速度和t的值;(2)利用待定系数法即可求解;(3)利用待定系数法求得轿车从乙地到甲地的函数解析式和货车路程和时间的函数解析式,求交点坐标即可.【详解】解:(1)轿车从甲地到乙地的速度是:=80(千米/小时),则轿车从乙地返回甲地的速度为80×1.5=120(千米/小时),则t=+=(小时).故答案是:120,;(2)设轿车从乙地返回甲地的函数关系式为:y=kx+b.将(,120)和(,0),两点坐标代入,得,解得:,所以轿车从乙地返回甲地时y与x之间的函数关系式为:y=-120x+300;(3)设货车从甲地驶往乙地的函数关系式为:y=ax将点(2,120)代入解得,解得a=60,故货车从甲地驶往乙地时y与x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论