版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年江苏省宜兴市张渚徐舍教联盟数学八年级下册期末学业质量监测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,是反比例函数y1=和y2=(k1<k2)在第一象限的图象,直线AB∥x轴,并分别交两条曲于A、B两点,若S△AOB=3,则k2﹣k1的值是()A.8 B.6 C.4 D.22.若式子有意义,则实数a的取值范围是()A.a>﹣1 B.a>﹣1且a≠2 C.a≥﹣1 D.a≥﹣1且a≠23.下列二次根式中,属于最简二次根式的是A. B. C. D.4.如图,证明矩形的对角线相等,已知:四边形是矩形.求证:.以下是排乱了的证明过程:①∴、.②∵③∵四边形是矩形④∴⑤∴.证明步骤正确的顺序是()A.③①②⑤④ B.②①③⑤④ C.③⑤②①④ D.②⑤①③④5.分式,-,的最简公分母是(
)A.5abx B.5abx3 C.15abx D.15abx26.具备下列条件的三角形中,不是直角三角形的是()A.∠A+∠B=∠C B.∠B=∠C=∠AC.∠A=90°-∠B D.∠A-∠B=90°7.如图,平面直角坐标系中,已知A(2,2)、B(4,0),若在x轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A.1 B.2 C.3 D.48.如图,矩形ABCD的顶点A,C分别在直线a,b上,且a∥b,∠1=50°,则∠2的度数为()A.30° B.40° C.50° D.60°9.已知y与(x﹣1)成正比例,当x=1时,y=﹣1.则当x=3时,y的值为()A.1 B.﹣1 C.3 D.﹣310.已知:如图,菱形中,对角线、相交于点,且,,点是线段上任意一点,且,垂足为,,垂足为,则的值是A.12 B.24 C.36 D.4811.下面四个二次根式中,最简二次根式是()A. B. C. D.12.在下列交通标志中,是中心对称图形的是()A. B.C. D.二、填空题(每题4分,共24分)13.如果P(2,m),A(1,1),B(4,0)三点在同一直线上,则m的值为_________.14.在数学课上,老师提出如下问题:如图1,将锐角三角形纸片ABC(BC>AC)经过两次折叠,得到边AB,BC,CA上的点D,E,F.使得四边形DECF恰好为菱形.小明的折叠方法如下:如图2,(1)AC边向BC边折叠,使AC边落在BC边上,得到折痕交AB于D;(2)C点向AB边折叠,使C点与D点重合,得到折痕交BC边于E,交AC边于F.老师说:“小明的作法正确.”请回答:小明这样折叠的依据是______________________________________.15.在4个不透明的袋子中分别装有10个球,其中,1号袋中有10个红球,2号袋中有8个红球.2个白球,3号袋中有5个红球.5个白球,4号袋中有2个红球,8个白球.从各个袋子中任意摸出1个球,摸到白球的可能性最大的是_____(填袋子号).16.如图,把一张矩形的纸沿对角线BD折叠,若AD=8,AB=6,则BE=__.17.已知Rt△ABC,∠ABC=90°,小明按如下步骤作图,①以A为圆心,BC长为半径作弧,以C为圆心,AB长为半径作弧,两弧相交于点D;②连接DA,DC,则四边形ABCD为___________.18.对于函数y=(m﹣2)x+1,若y随x的增大而增大,则m的取值范围_____.三、解答题(共78分)19.(8分)某学校为了加强训练学生的篮球和足球运球技能,准备购买一批篮球和足球用于训练,已知1个篮球和2个足球共需116元;2个篮球和3个足球共需204元求购买1个篮球和1个足球各需多少元?若学校准备购进篮球和足球共40个,并且总费用不超过1800元,则篮球最多可购买多少个?20.(8分)如果一组数据1,2,2,4,的平均数为1.(1)求的值;(2)求这组数据的众数.21.(8分)如图,在△AOB中,∠ABO=90°,OB=4,AB=8,直线y=-x+b分别交OA、AB于点C、D,且ΔBOD的面积是4.(1)求直线AO的解析式;(2)求直线CD的解析式;(3)若点M是x轴上的点,且使得点M到点A和点C的距离之和最小,求点的坐标.22.(10分)某中学为了预防流行性感冒,对教室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量与时间成正比例.药物燃烧后,y与x成反比例(如图所示),现测得药物6min燃毕,此时室内空气中每立方米的含药量为4mg,(1)写出药物燃烧前后,y与x之间的函数表达式;(2)研究表明,当空气中每立方米的含药量低于1.6mg时学生方可进教室,那么从消毒开始,至少需要经过多少分钟,学生方能回到教室?(3)研究表明,当空气中每立方米的含药量不低于2mg且持续时间不低于9min时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?23.(10分)如图,直线分别与轴、轴交于点、点,与直线交于点.(1)若,请直接写出的取值范围;(2)点在直线上,且的面积为3,求点的坐标?24.(10分)体育课上,甲、乙两个小组进行定点投篮对抗赛,每组10人,每人投10次.下表是甲组成绩统计表:投进个数10个8个6个4个人数1个5人1人1人(1)请计算甲组平均每人投进个数;(1)经统计,两组平均每人投进个数相同且乙组成的方差为3.1.若从成绩稳定性角度看,哪一组表现更好?25.(12分)在平面直角坐标系xOy中,一次函数的图象与直线平行,且经过点A(1,6).(1)求一次函数的解析式;(2)求一次函数的图象与坐标轴围成的三角形的面积.26.我国是世界上严重缺水的国家之一,2011年春季以来,我省遭受了严重的旱情,某校为了组织“节约用水从我做起”活动,随机调查了本校120名同学家庭月人均用水量和节水措施情况,如图1、图2是根据调查结果做出的统计图的一部分.请根据信息解答下列问题:(1)图1中淘米水浇花所占的百分比为;(2)图1中安装节水设备所在的扇形的圆心角度数为;(3)补全图2;(4)如果全校学生家庭总人数为3000人,根据这120名同学家庭月人均用水量,估计全校学生家庭月用水总量是多少吨?
参考答案一、选择题(每题4分,共48分)1、B【解析】
本题主要考察反比例函数系数的几何意义,反比例函数图像上点的坐标特征,三角形面积等知识点.【详解】设A(a,b),B(c,d),代入双曲线得到k1=ab,k2=cd.因为三角形AOB的面积为3.所以cd-ab=3.即cd-ab=6.可得k2﹣k1=6.即本题选择B.【点睛】学会将三角形面积的表达与反比例函数的定义联系起来.2、D【解析】
直接利用分式有意义的条件分析得出答案.【详解】解:式子有意义,则且解得:且故选:D【点睛】本题考查了分式有意义的条件以及二次根式有意义的条件,能正确得到相关不等式是解题的关键.3、A【解析】
最简二次根式满足的条件是:被开方数不含能开方的因数或因式;被开方数不能是小数或分数;分母中不能出现二次根式.【详解】根据最简二次根式满足的条件可得:是最简二次根式,故选A.【点睛】本题主要考查最简二次根式的定义,解决本题的关键是要熟练掌握满足最简二次根式的条件.4、A【解析】
根据SAS定理证明三角形全等,进而得出对应边相等.【详解】解:∵四边形是矩形∴、∵∴∴所以正确顺序为③①②⑤④故答案为A【点睛】本题考查了全等三角形的证明,理清证明过程是排序的关键.5、D【解析】
求出ax,3b,5x2的最小公因式即可。【详解】解:由ax,3b,5x2得最小公因式为15abx2,故答案为D。【点睛】本题考查了最简公分母,即分母的最小公因式;其关键在于最小公因式,不仅最小,而且能被每一个分母整除。6、D【解析】
根据三角形内角和定理对各选项进行逐一判断即可.【详解】A.
∵∠A+∠B=∠C,∠A+∠B+∠C=180°∴2∠C=180°,解得∠C=90°,∴此三角形是直角三角形,故本选项错误;B.
∵∠B=∠C=∠A,∴设∠B=∠C=x,则∠A=2x.∵∠A+∠B+∠C=180°,∴x+x+2x=180°,解得x=45°,∴∠A=2x=90°,∴此三角形是直角三角形,故本选项错误;C.
∵∠A=90°−∠B,∴∠A+∠B=90°,∴此三角形是直角三角形,故本选项错误;D.∵∠A-∠B=90°,∴∠A=∠B+90°,∴此三角形不是直角三角形,故本选项正确.故答案选D.【点睛】本题考查了三角形内角和定理,解题的关键是熟练的掌握三角形内角和定理.7、D【解析】
由点A、B的坐标可得到AB=2,然后分类讨论:若AC=AB;若BC=AB;若CA=CB,确定C点的个数.【详解】∵点A、B的坐标分别为(2,2)、B(4,0).∴AB=2,如图,①若AC=AB,以A为圆心,AB为半径画弧与x轴有2个交点(含B点),即(0,0)、(4,0),∴满足△ABC是等腰三角形的C点有1个;②若BC=AB,以B为圆心,BA为半径画弧与x轴有2个交点,即满足△ABC是等腰三角形的C点有2个;③若CA=CB,作AB的垂直平分线与x轴有1个交点,即满足△ABC是等腰三角形的C点有1个;综上所述:点C在x轴上,△ABC是等腰三角形,符合条件的点C共有4个.故选D.【点睛】本题主考查了等腰三角形的判定以及分类讨论思想的运用,分三种情况分别讨论,注意等腰三角形顶角的顶点在底边的垂直平分线上.8、C【解析】
作BF∥a,根据平行线的性质即可求解.【详解】解:作BF∥a,∴∠3=∠1=50°,∵四边形ABCD是矩形,∴∠ABC=∠BCD=90°,∴∠4=40°,∵BF∥a,a∥b,∴BF∥b,∴∠5=∠4=40°,∴∠2=180°﹣∠5﹣90°=50°,故选:C.【点睛】此题主要考查平行线的性质,解题的关键是根据题意作出辅助线进行求解.9、A【解析】
利用待定系数法求出一次函数解析式,代入计算即可.【详解】解:∵y与(x-1)成正比例,
∴设y=k(x-1),
由题意得,-1=k(1-1),
解得,k=1,
则y=1x-4,
当x=3时,y=1×3-4=1,
故选:A.【点睛】本题考查了待定系数法求一次函数解析式,掌握待定系数法求一次函数解析式一般步骤是解题的关键.10、A【解析】
由菱形的性质可得AC⊥BD,AO=CO=3,BO=DO=4,通过证明△AFP∽△AOD,△PED∽△AOD,可得,,即可求解.【详解】解:四边形是菱形,,,,,,,故选:.【点睛】本题考查了菱形的性质,相似三角形的判定和性质,利用相似比求解是本题的关键.11、A【解析】分析:根据最简二次根式的概念进行判断即可.详解:A.是最简二次根式;B.被开方数含分母,故B不是最简二次根式;C.被开方数含能开得尽方的因数,故C不是最简二次根式;D.被开方数含有小数,故D不是最简二次根式.故选A.点睛:本题考查了最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.12、C【解析】
解:A图形不是中心对称图形;B不是中心对称图形;C是中心对称图形,也是轴对称图形;D是轴对称图形;不是中心对称图形故选C二、填空题(每题4分,共24分)13、【解析】设直线的解析式为y=kx+b(k≠0),∵A(1,1),B(4,0),,解之得,∴直线AB的解析式为,∵P(2,m)在直线上,.14、对角线互相垂直平分的四边形是菱形【解析】
解:如图,连接DF、DE.根据折叠的性质知,CD⊥EF,且OD=OC,OE=OF.则四边形DECF恰为菱形.所以小明这样折叠的依据是:对角线互相垂直平分的四边形是菱形.15、1【解析】
要求可能性的大小,只需求出各自所占的比例大小即可.【详解】解:1号袋子摸到白球的可能性=0;2号袋子摸到白球的可能性=;3号袋子摸到白球的可能性=;1号个袋子摸到白球的可能性=,所以摸到白球的可能性最大的是1.【点睛】本题主要考查了可能性大小的计算,用到的知识点为:可能性等于所求情况数与总情况数之比,难度适中.16、【解析】试题解析:∵AD∥BC,∴∠EDB=∠CBD,又∠EBD=∠CBD,∴∠EBD=∠EDB,∴EB=ED,又BC′=BC=AD,∴EA=EC′,在Rt△EC′D中,DE2=EC′2+DC′2,即DE2=(8-DE)2+62,解得DE=.17、矩形【解析】
直接利用小明的作图方法得出四边形ABCD是平行四边形,进而利用矩形的判定方法得出答案.【详解】解:根据小明的作图方法可知:AD=BC,AB=DC,∠B=90°,∵AD=BC,AB=DC,
∴四边形ABCD是平行四边形,
∵∠B=90°,
∴平行四边形ABCD是矩形.
故答案为:矩形.【点睛】本题主要考查了复杂作图,正确掌握平行四边形的判定方法和矩形的判定方法是解题关键.18、m>1【解析】
根据图象的增减性来确定(m﹣1)的取值范围,从而求解.【详解】解:∵一次函数y=(m﹣1)x+1,若y随x的增大而增大,∴m﹣1>2,解得,m>1.故答案是:m>1.【点睛】本题考查了一次函数的图象与系数的关系.函数值y随x的增大而减小⇔k<2;函数值y随x的增大而增大⇔k>2.三、解答题(共78分)19、(1)购买一个篮球需60元,购买一个足球需28元;(2)篮球最多可购买21个.【解析】
(1)设购买一个篮球元,购买一个足球元,根据“1个篮球和2个足球共需116元,2个篮球和3个足球共需204元”,即可得出关于、的二元一次方程组,解之即可得出结论;(2)设购买个篮球,则购买的足球数为,根据费用=单价×数量,分别求出篮球和足球的费用,二者相加便是总费用,总费用不超过1800元,列出关于的一元一次不等式,解之即可得出结论.【详解】解:设购买一个篮球的需x元,购买一个足球的需
y元,依题意得,解得,答:购买一个篮球需60元,购买一个足球需28元;设购买m个篮球,则足球数为,依题意得:,解得:,而m为正整数,,答:篮球最多可购买21个.【点睛】本题考查了二元一次方程组的应用及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据数量关系,正确列出一元一次不等式.20、(1);(2)2和4.【解析】
(1)利用平均数的计算公式列出关于x的方程,求出x即可求出答案;(2)根据众数的定义即可求出答案.【详解】解:(1)由平均数为1,得,解得:.(2)当时,这组数据是2,2,1,4,4,其中有两个2,也有两个4,是出现次数最多的,∴这组数据的众数是2和4.【点睛】本题考查平均数和众数,熟练掌握平均数的计算公式和众数的定义是解决本题的关键.在(2)中,一定记住一组数的众数有可能有几个.21、(1)y=2x;(2);(3)点M的坐标为(,0).【解析】
(1)先求出点A的坐标,然后设直线AO的解析式为y=kx,用待定系数法求解即可;(2)由面积法求出BD的长,从而求出点D的坐标,然后带入y=-x+b求解即可;(3)先求出点C的坐标,作点C关于x轴的对称点E,此时M到A、C的距离之和最小,求出直线AE的解析式,即可求出点M的坐标.【详解】(1)OB=4,AB=8,∠ABO=90°,∴A点坐标为(4,8),设直线AO的解析式为y=kx,则4k=8,解得k=2,即直线AO的解析式为y=2x;(2)OB=4,∠ABO=90°,=4,∴DB=2,∴D点的坐标为(4,2),把D(4,2)代入得:=6,∴直线CD的解析式为;(3)由直线与直线组成方程组为,解得:,∴点C的坐标为(2,4)如图,设点M使得MC+MA最小,作点C关于x轴的对称点E,可得点E的坐标为(2,-4),连结MC、ME、AE,可知MC=ME,所以M到A、C的距离之和MA+MC=MA+ME,又MA+ME大于等于AE,所以当MA+ME=AE时,M到A、C的距离之和最小,此时A、M、E成一条直线,M点是直线AE与在x轴的交点.所以设直线AE的解析式为,把A(4,8)和E(2,-4)代入得:,解得:,所以直线AE的解析式为,令得,所以点M的坐标为(,0).【点睛】本题考查了待定系数法求函数解析式,一次函数的交点等面积法求线段的长及轴对称最短问题,熟练掌握待定系数法是解答本题的关键.22、(1)药物燃烧时y关于x的函数关系式为:;药物燃烧后y关于x的函数关系式为:;(2)至少需要15分钟后学生方能回到教室;(3)此次消毒有效.【解析】
(1)药物燃烧时,设出y与x之间的解析式y=k1x,把点(6,4)代入即可;药物燃烧后,设出y与x之间的解析式,把点(6,4)代入即可;(2)把y=1.6代入反比例函数解析式,求出相应的x即可判断;(3)把y=2代入正比例函数解析式和反比例函数解析式,求出相应的x,两数之差与9进行比较,不小于9就有效.【详解】解:(1)设药物燃烧时y关于x的函数关系式为y=k1x(k1≠0),代入(6,4)得:4=6k1,解得:,∴药物燃烧时y关于x的函数关系式为:;设药物燃烧后y关于x的函数关系式为,代入(6,4)得,解得:k2=24,∴药物燃烧后y关于x的函数关系式为:;(2)将y=1.6代入,解得:x=15,所以从消毒开始,至少需要15分钟后学生方能回到教室;(3)把y=2代入,得:x=3,把y=2代入,得:x=12,∵12−3=9,所以此次消毒有效.【点睛】本题考查了一次函数和反比例函数的综合应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.23、(1)x>2;(2)(0,3)或(4,1).【解析】
(1)依据直线l1:y1=x+b与直线l2:y2=x交于点C(2,2),即可得到当y1<y2时,x>2;(2)分两种情况讨论,依据△OPC的面积为3,即可得到点P的坐标.【详解】解:(1)∵直线l1:y1=x+b与直线l2:y2=x交于点C(2,2),∴当y1<y2时,x>2;(2)将(2,2)代入y1=x+b,得b=3,∴y1=x+3,∴A(6,0),B(0,3),设P(x,x+3),则当x<2时,由×3×2×3×x=3,解得x=0,∴P(0,3);当x>2时,由×6×2﹣×6×(x+3)=3,解得x=4,∴x+3=1,∴P(4,1),综上所述,点P的坐标为(0,3)或(4,1).故答案为(1)x>2;(2)(0,3)或(4,1).【点睛】本题主要考查了一次函数图象上点的坐标特征以及一次函数的性质,设P(x,x+3),利用三角形的面积的和差关系列方程是解题的关键.24、(1)甲组平均每人投进个数为7个;(1)乙组表现更好.【解析】
(1)加权平均数:若n个数x1,x1,x3,…,xn的权分别是w1,w1,w3,…,wn,则x1w1+x1w1+…+xnwnw1+w1+…+wn叫做这n个数的加权平均数,根据加权平均数的定义计算即可.(1)用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,通常用s1来表示,根据方差的计算公式结合平均数进行计算即可.【详解】解:(1)甲组平均每人投进个数:(个;(1)甲组方差:,乙组的方差为3.1,3.1<3.4所以从成绩稳定性角度看,乙
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年超市季节性促销员劳动合同3篇
- 二零二五版智能家居砌墙装修承包合同范本2篇
- 二零二五版3海上货物运输合同-海上货物运输事故处理及赔偿协议2篇
- 二零二五版综合性博士后研究人员聘用合同书3篇
- 二零二五版物联网技术培训服务合同样本2篇
- 二零二五年度版权买卖合同(图书)5篇
- 二零二五版劳动合同法下社保购买期限及权益保障协议3篇
- 二零二五年度餐厅线上线下融合推广承包合同2篇
- 二零二五年网络广告投放合同封面素材2篇
- 二零二五版电影IP授权与赞助合同3篇
- 税前工资反算表模板
- 广东省深圳市2023年中考英语试题(含答案与解析)
- MOOC 电工学(电气工程学概论)-天津大学 中国大学慕课答案
- 2019级水电站动力设备专业三年制人才培养方案
- 室内装饰装修施工组织设计方案
- 洗浴中心活动方案
- 送电线路工程施工流程及组织措施
- 肝素诱导的血小板减少症培训课件
- 韩国文化特征课件
- 抖音认证承诺函
- 清洁剂知识培训课件
评论
0/150
提交评论