2024年江苏省无锡市周铁区联盟八年级数学第二学期期末复习检测试题含解析_第1页
2024年江苏省无锡市周铁区联盟八年级数学第二学期期末复习检测试题含解析_第2页
2024年江苏省无锡市周铁区联盟八年级数学第二学期期末复习检测试题含解析_第3页
2024年江苏省无锡市周铁区联盟八年级数学第二学期期末复习检测试题含解析_第4页
2024年江苏省无锡市周铁区联盟八年级数学第二学期期末复习检测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年江苏省无锡市周铁区联盟八年级数学第二学期期末复习检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.下列各组线段中,能够组成直角三角形的一组是()A.1,2,3 B.2,3,4 C.4,5,6 D.1,3,22.等式•=成立的条件是()A. B. C. D.3.如图,矩形ABCD的长和宽分别为6和4,E、F、G、H依次是矩形ABCD各边的中点,则四边形EFGH的周长等于()A.20 B.10 C.4 D.24.三角形的三边长分别为6,8,10,它的最短边上的高为()A.6B.4.5C.2.4D.85.y=(m﹣1)x|m|+3m表示一次函数,则m等于()A.1 B.﹣1 C.0或﹣1 D.1或﹣16.函数中自变量x的取值范围是()A. B.且 C.x<2且 D.7.如图,在中□ABCD中,点E、F分别在边AB、CD上移动,且AE=CF,则四边形DEBF不可能是()A.平行四边形 B.梯形 C.矩形 D.菱形8.甲乙两人匀速从同一地点到1511米处的图书馆看书,甲出发5分钟后,乙以51米/分的速度沿同一路线行走.设甲乙两人相距s(米),甲行走的时间为t(分),s关于t的函数图象的一部分如图所示.下列结论正确的个数是()(1)t=5时,s=151;(2)t=35时,s=451;(3)甲的速度是31米/分;(4)t=12.5时,s=1.A.1个 B.2个 C.3个 D.4个9.矩形一个内角的平分线把矩形的一边分成和,则矩形的周长为()A.和 B. C. D.以上都不对10.一个圆锥形的圣诞帽高为10cm,母线长为15cm,则圣诞帽的表面积为()A.75cm2 B.150cm2 C.150cm2 D.75cm2二、填空题(每小题3分,共24分)11.如图,在平面直角坐标系中,函数y=2x﹣3和y=kx+b的图象交于点P(m,1),则关于x的不等式2x﹣3>kx+b的解集是_____.12.如图,矩形的顶点分别在反比例函数的图像上,顶点在轴上,则矩形的面积是______.13.如图,将一朵小花放置在平面直角坐标系中第三象限内的甲位置,先将它绕原点O旋转180∘到乙位置,再将它向下平移2个单位长到丙位置,则小花顶点A在丙位置中的对应点A'的坐标为______14.用反证法证明命题“三角形中至少有一个内角大于或等于60°”,第一步应假设_____.15.如图,在△ABC中,AB=AC,点E在CA延长线上,EP⊥BC于点P,交AB于点F,若AF=2,BF=3,则CE的长度为.16.如图.在平面直角坐标系中,函数(其中,)的图象经过的顶点.函数(其中)的图象经过顶点,轴,的面积为.则的值为____.17.如图,在矩形ABCD中,AB=6,BC=4,将矩形沿AC折叠,点D落在处,则重叠部分△AFC的面积为___________18.要使分式有意义,应满足的条件是__________三、解答题(共66分)19.(10分)已知,利用因式分解求的值.20.(6分)的中线BD,CE相交于O,F,G分别是BO,CO的中点,求证:,且.21.(6分)一个二次函数的图象经过(﹣1,﹣1),(0,0),(1,9)三点(1)求这个二次函数的解析式.(2)若另外三点(x1,21),(x2,21),(x1+x2,n)也在该二次函数图象上,求n的值.22.(8分)甲、乙两校参加市教育局举办的初中生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表.分数7分8分9分10分人数1108(1)请将甲校成绩统计表和图2的统计图补充完整;(2)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好.23.(8分)已知:如图,在△ABC中,AB=AC=4cm,将△ABC沿CA方向平移4cm得到△EFA,连接BE,BF;BE与AF交于点G(1)判断BE与AF的位置关系,并说明理由;(2)若∠BEC=15°,求四边形BCEF的面积.24.(8分)小明和同桌小聪在课后复习时,对练习册“目标与评定”中的一道思考题,进行了认真地探索.(思考题)如图,一架2.5米长的梯子AB斜靠在竖直的墙AC上,这时B到墙C的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么点B将向外移动多少米?(1)请你将小明对“思考题”的解答补充完整:解:设点B将向外移动x米,即BB1=x,则A1B1=2.5,在Rt△A1B1C中,由B1C2+A1C2=A1B12,得方程______,解方程,得x1=______,x2=______,∴点B将向外移动______米.(2)解完“思考题”后,小聪提出了如下两个问题:①(问题一)在“思考题”中,将“下滑0.4米”改为“下滑0.9米”,那么该题的答案会是0.9米吗?为什么?②(问题二)在“思考题”中,梯子的顶端从A处沿墙AC下滑的距离与点B向外移动的距离,有可能相等吗?为什么?请你解答小聪提出的这两个问题.25.(10分)计算:(1);(2)(﹣)(+)+(﹣1)226.(10分)某工厂为了解甲、乙两个部门员工的生产技能情况,从甲、乙两个部门各随机抽取20名员工,进行生产技能测试,测试成绩(百分制)如下:甲

78

8674

81

75

76

87

70

75

90

75

79

81

70

74

80

86

69

83

77乙

93

7388

81

72

81

94

83

77

83

80

81

70

81

73

78

82

80

70

40(说明:成绩80分及以上为优秀,70-79分为良好,60-69分为合格,60分以下为不合格)(1)请填完整表格:部门平均数中位数众数甲78.375乙7880.5

(2)从样本数据可以推断出部门员工的生产技能水平较高,请说明理由.(至少从两个不同的角度说明推断的合理性).

参考答案一、选择题(每小题3分,共30分)1、D【解析】

根据勾股定理的逆定理判断即可.【详解】解:1+2=3,A不能构成三角形;22+32≠42,B不能构成直角三角形;42+52≠62,C不能构成直角三角形;12+(3)2=22,D能构成直角三角形;故选:D.【点睛】本题考查了能构成直角三角形的三边关系,解题的关键是掌握勾股定理.2、C【解析】根据二次根式的乘法法则成立的条件:a≥0且b≥0,即可确定.解:根据题意得:,

解得:x≥1.x≥–1,

故答案是:x≥1.

“点睛”本题考查了二次根式的乘法法则,理解二次根式有意义的条件是关键.3、C【解析】

根据矩形ABCD中,E、F、G、H分别是AD、AB、BC、CD的中点,利用三角形中位线定理求证EF=GH=FG=EH,然后利用四条边都相等的平行四边形是菱形.根据菱形的性质来计算四边形EFGH的周长即可.【详解】如图,连接BD,AC.在矩形ABCD中,AB=4,AD=6,∠DAB=90°,则由勾股定理易求得BD=AC=2.∵矩形ABCD中,E、F、G、H分别是AD、AB、BC、CD的中点,∴EF为△ABC的中位线,∴EF=AC=,EF∥AC,又GH为△BCD的中位线,∴GH=AC=,GH∥AC,∴HG=EF,HG∥EF,∴四边形EFGH是平行四边形.同理可得:FG=BD=,EH=AC=,∴EF=GH=FG=EH=,∴四边形EFGH是菱形.∴四边形EFGH的周长是:4EF=4,故选C.【点睛】此题考查中点四边形,掌握三角形中位线定理是解题关键4、D【解析】本题考查了直角三角形的判定即勾股定理的逆定理和直角三角形的性质由勾股定理的逆定理判定该三角形为直角三角形,然后由直角三角形的定义解答出最短边上的高.由题意知,,所以根据勾股定理的逆定理,三角形为直角三角形.长为6的边是最短边,它上的高为另一直角边的长为1.故选D.5、B【解析】由一次函数的定义知,|m|=1且m-1≠0,所以m=-1,故选B.6、B【解析】

由已知得:且,解得:且.故选B.7、B【解析】

由于在平行四边形ABCD中AB=CD,而AE=CF,由此可以得到BE=DF,根据平行四边形的判定方法即可判定其实平行四边形,所以不可能是梯形.【详解】解:∵四边形ABCD是平行四边形,

∴AB=CD,AB∥CD,

又AE=CF,

∴BE=DF,

∴四边形BEDF是平行四边形,所以不可能是梯形.

故选:B.【点睛】本题考查平行四边形的性质,注意:一组对边平行,一组对角相等的四边形是平行四边形;一组对边平行,另一组对边相等的四边形不一定是平行四边形,如:等腰梯形.8、D【解析】

结合图像可以判断(1)(2)是否正确;由图象可知时,米,根据速度=路程÷时间,即可得到甲行走的速度;由图可以列出在时间为5至15范围内的函数:31t=51(t﹣5),再计算即可得到答案.【详解】由图象可知,当t=5时,s=151,故(1)正确;当t=35时,s=451,故(2)正确;甲的速度是151÷5=31米/分,故(3)正确;令31t=51(t﹣5),解得,t=12.5,即当t=12.5时,s=1,故(4)正确;故选D.【点睛】本题考查读图能力和一元一次函数的应用,解题的关键是能够读懂图中的信息.9、A【解析】

利用角平分线得到∠ABE=∠CBE,矩形对边平行得到∠AEB=∠CBE.那么可得到∠ABE=∠AEB,可得到AB=AE.那么根据AE的不同情况得到矩形各边长,进而求得周长.【详解】∵矩形ABCD中BE是角平分线.∴∠ABE=∠EBC.∵AD∥BC.∴∠AEB=∠EBC.∴∠AEB=∠ABE.∴AB=AE.平分线把矩形的一边分成3cm和5cm.当AE=3cm时:则AB=CD=3cm,AD=CB=8cm则矩形的周长是:22cm;当AE=5cm时:AB=CD=5cm,AD=CB=8cm,则周长是:26cm.故选A.【点睛】本题主要运用了矩形性质,角平分线的定义和等角对等边知识,正确地进行分情况讨论是解题的关键.10、A【解析】

利用圆锥的高,母线长,底面半径组成直角三角形可求得圆锥底面半径,圆锥的侧面积=底面周长×母线长÷1.【详解】解:高为10cm,母线长为15cm,由勾股定理得,底面半径==5cm,底面周长=10πcm,

侧面面积=×10π×15=75πcm1.

故选:A.【点睛】本题考查圆锥的计算,利用勾股定理,圆的周长公式和圆锥侧面积公式求解.二、填空题(每小题3分,共24分)11、x>1.【解析】把点P(m,1)代入y=1x﹣3即可得1m-3=1,解得m=1,所以点P的坐标为(1,1),观察图象可得不等式1x﹣3>kx+b的解集是x>1.12、3【解析】

延长CD与y轴交于E,可得矩形OBCE,所以,矩形的面积=矩形OBCE的面积-矩形OADE的面积.【详解】延长CD与y轴交于E,可得矩形OBCE,所以,矩形的面积=矩形OBCE的面积-矩形OADE的面积因为矩形的顶点分别在反比例函数的图像上,所以矩形OBCE的面积=6,矩形OADE的面积=3所以矩形的面积=6-3=3故答案为:3【点睛】考查反比例函数k的几何意义,即过反比例函数图象上一点,分别向x轴、y轴作垂线,与坐标轴围成的矩形的面积等于|k|.13、(3,-1)【解析】根据图示可知A点坐标为(-3,-1),根据绕原点O旋转180°横纵坐标互为相反数∴旋转后得到的坐标为(3,1),根据平移“上加下减”原则,∴向下平移2个单位得到的坐标为(3,-1),14、三角形的三个内角都小于60°【解析】

熟记反证法的步骤,直接填空即可.【详解】第一步应假设结论不成立,即三角形的三个内角都小于60°.故答案为三角形的三个内角都小于60°.【点睛】反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时,要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.15、7【解析】试题分析:如图,过点A做BC边上高,所以EPAM,所以∆BFP~∆BAM,∆CAM~CEP,因为AF=2,BF=3,AB=AC=5,所以,BM=CM,所以,因此CE=716、-1.【解析】

根据反比例函数K的几何意义即可得到结果【详解】解:依题意得:+=解得:K=,∵反比例函数图象在第2象限,∴k=-1.故答案为-1.【点睛】本题考查了反比例函数K的几何意义,正确掌握反比例函数K的几何意义是解题的关键.17、【解析】

因为BC为AF边上的高,要求△AFC的面积,求得AF即可,求证△AFD′≌△CFB,得BF=D′F,设D′F=x,则在Rt△AFD′中,根据勾股定理求x,则AF=AB−BF.【详解】解:由于折叠可得:AD′=BC,∠D′=∠B,又∠AFD′=∠CFB,∴△AFD′≌△CFB(AAS),∴D′F=BF,设D′F=x,则AF=6−x,在Rt△AFD′中,(6−x)2=x2+42,解之得:x=,∴AF=AB−FB=6−=,∴S△AFC=•AF•BC=.故答案为:.【点睛】本题考查了勾股定理的正确运用,本题中设D′F=x,根据直角三角形AFD′中运用勾股定理求x是解题的关键.18、【解析】

本题主要考查分式有意义的条件:分母不能为1.【详解】解:∵x-2≠1,

∴x≠2,

故答案是:x≠2.【点睛】本题考查的是分式有意义的条件,当分母不为1时,分式有意义.三、解答题(共66分)19、75.【解析】

原式分解因式后,将已知等式代入计算即可求出值.【详解】原式【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.20、证明见解析.【解析】分析:连接DE,FG,由BD与CE为中位线,利用中位线定理得到ED与BC平行,FG与BC平行,且都等于BC的一半,等量代换得到ED与FG平行且相等,进而得到四边形EFGD为平行四边形,利用平行四边形的性质即可得证.详解:证明:连接DE,FG,,CE是的中位线,,E是AB,AC的中点,,,同理:,,,,四边形DEFG是平行四边形,,.

点睛:此题考查了三角形中位线定理,以及平行线的判定,熟练掌握中位线定理是解本题的关键.21、(1)y=4x2+5x;(2)n=1.【解析】

(1)先设出二次函数的解析式,然后将已知条件代入其中并解答即可;(2)由抛物线的对称轴对称x1+x2=﹣,代入解析式即可求得n的值.【详解】解:(1)设二次函数的关系式为y=ax2+bx+c(a≠1),∵二次函数的图象经过点(1,1),(﹣1,﹣1),(1,9)三点,∴,解得,所以二次函数的解析式是:y=4x2+5x;(2)∵二次函数为y=4x2+5x,∴对称轴为直线x=﹣=﹣,∵三点(x1,21),(x2,21),(x1+x2,n)在该二次函数图象上,∴=﹣,∴x1+x2=﹣,∴n=4×(﹣)2+5×(﹣)=1.【点睛】本题主要考查二次函数,掌握二次函数的图象和性质以及待定系数法是解题的关键.22、(1)见解析;(2)见解析【解析】试题分析:(1)根据已知10分的有5人,所占扇形圆心角为90°,可以求出总人数,即可得出甲校9分的人数和乙校8分的人数,从而可补全统计图;(2)根据把分数从小到大排列,利用中位数的定义解答,根据平均数求法得出甲的平均数.试题解析:(1)根据已知10分的有5人,所占扇形圆心角为90°,可以求出总人数为:5÷=20(人),即可得出8分的人数为:20-8-4-5=3(人),画出图形如图:甲校9分的人数是:20-11-8=1(人),(2)甲校的平均分为=(7×11+8×0+9×1+10×8)=8.3分,分数从低到高,第10人与第11人的成绩都是7分,∴中位数=(7+7)=7(分);平均分相同,乙的中位数较大,因而乙校的成绩较好.考点:1.扇形统计图;2.条形统计图;3.算术平均数;4.中位数.23、(1)BE⊥AF,理由详见解析;(2)1.【解析】

(1)由△ABC沿CA方向平移4cm得到△EFA,即可得BF=CA=AE,AB=EF,又由AB=AC,证得AB=BF=EF=AE,根据有四条边都相等的四边形是菱形,即可证得四边形ABFE是菱形,再根据菱形的对角线互相垂直可得BE⊥AF;(2)首先作BM⊥AC于点M,由AB=AE,∠BEC=15°,求得∠BAC=30°,那么BM=AB=2cm,然后利用梯形的面积公式即可求得四边形BCEF的面积.【详解】解:(1)BE⊥AF.理由如下:∵将△ABC沿CA方向平移4cm得到△EFA,∴BF=CA=AE=4cm,AB=EF.∵AB=AC,∴AB=BF=EF=AE,∴四边形ABFE是菱形,∴BE⊥AF;(2)作BM⊥AC于点M.∵AB=AE,∠BEC=15°,∴∠ABE=∠AEB=15°,∴∠BAC=30°.∴BM=AB=2cm.∵BF=CA=AE=4cm,∴四边形BCEF的面积=(BF+CE)•BM=×1×2=1.【点睛】此题考查了菱形的判定与性质,平移的性质,等腰三角形的性质,梯形面积的求法等知识.此题难度不大,掌握平移的性质是解题的关键.24、(1)(x+0.7)2+22=2.52,0.8,-2.2(舍去),0.8;(2)【问题一】不会是0.9米,理由见解析;【问题二】有可能,理由见解析.【解析】

(1)直接把B1C、A1C、A1B1的值代入进行解答即可;

(2)把(1)中的0.4换成0.9可知原方程不成立;设梯子顶端从A处下滑x米,点B向外也移动x米代入(1)中方程,求出x的值符合题意.【详解】(1)(x+0.7)2+22=2.52,0.8,-2.2(舍去),0.8

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论