浙江省绍兴市柯桥区2024届数学八年级下册期末检测模拟试题含解析_第1页
浙江省绍兴市柯桥区2024届数学八年级下册期末检测模拟试题含解析_第2页
浙江省绍兴市柯桥区2024届数学八年级下册期末检测模拟试题含解析_第3页
浙江省绍兴市柯桥区2024届数学八年级下册期末检测模拟试题含解析_第4页
浙江省绍兴市柯桥区2024届数学八年级下册期末检测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省绍兴市柯桥区2024届数学八年级下册期末检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.在一次函数y=kx+1中,若y随x的增大而增大,则它的图象不经过第()象限A.四B.三C.二D.一2.甲袋装有4个红球和1个黑球,乙袋装有6个红球、4个黑球和5个白球.这些球除了颜色外没有其他区别,分别搅匀两袋中的球,从袋中分别任意摸出一个球,正确说法是()A.从甲袋摸到黑球的概率较大B.从乙袋摸到黑球的概率较大C.从甲、乙两袋摸到黑球的概率相等D.无法比较从甲、乙两袋摸到黑球的概率3.下列调查中,适宜采用普查方式的是()A.调查一批新型节能灯泡的使用寿命B.调查常熟市中小学生的课外阅读时间C.对全市中学生观看电影《厉害了,我的国》情况的调查D.对卫星“张衡一号”的零部件质量情况的调查4.已知反比例函数,在每个象限内y随着x的增大而增大,点P(a-1,2)在这个反比例函数上,a的值可以是(

)A.0 B.1 C.2 D.35.无理数在两个整数之间,下列结论正确的是()A.2~3之间 B.3~4之间 C.4~5之间 D.5~6之间6.一次数学测验中,某小组五位同学的成绩分别是:110,105,90,95,90,则这五个数据的中位数是()A.90 B.95 C.100 D.1057.下列各式中,运算正确的是()A. B.C.2+=2 D.8.下列命题是真命题的是()A.平行四边形的对角线互相平分且相等B.任意多边形的外角和均为360°C.邻边相等的四边形是菱形D.两个相似比为1:2的三角形对应边上的高之比为1:49.如图,在△ABC中,点D,E,F分别是AB,BC,AC的中点,连接DE,EF,DF,则下列说法不正确的是()A.S△DEF=S△ABCB.△DEF≌△FAD≌△EDB≌△CFEC.四边形ADEF,四边形DBEF,四边形DECF都是平行四边形D.四边形ADEF的周长=四边形DBEF的周长=四边形DECF的周长10.方程2x2﹣3x﹣5=0的二次项系数、一次项系数、常数项分别为()A.3、2、5B.2、3、5C.2、﹣3、﹣5D.﹣2、3、5二、填空题(每小题3分,共24分)11.△ABC中,AB=15,AC=13,高AD=12,则△ABC的面积为______________.12.已知a,b为一元二次方程x2+2x﹣9=0的两个根,那么a2+a﹣b的值为.13.直线y=2x+6经过点(0,a),则a=_____.14.若一元二次方程有两个不相同的实数根,则实数的取值范围________.15.如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为10和6时,则阴影部分的面积为_________.16.平行四边形的一个内角平分线将该平行四边形的一边分为2cm和3cm两部分,则该平行四边形的周长为______.17.小聪让你写一个含有字母的二次根式.具体要求是:不论取何实数,该二次根式都有意义,且二次根式的值为正.你所写的符合要求的一个二次根式是______.18.为了解某小区居民的用水情况,随机抽查了20户家庭的月用水量,结果如下表:月用水量/吨4568户数5753则这组数据的中位数是_____.三、解答题(共66分)19.(10分)如图,在等边△ABC中,点F、E分别在BC、AC边上,AE=CF,AF与BE相交于点P.(1)求证:AEP∽BEA;(2)若BE=3AE,AP=2,求等边ABC的边长.20.(6分)如图,四边形ABCD中,AB=AD,CB=CD,AB∥CD.(1)求证:四边形ABCD是菱形.(2)当△ABD满足什么条件时,四边形ABCD是正方形.(直接写出一个符合要求的条件).(3)对角线AC和BD交于点O,∠ADC=120°,AC=8,P为对角线AC上的一个动点,连接DP,将DP绕点D逆时针方向旋转120°得到线段DP1,直接写出AP1的取值范围.21.(6分)如图,菱形ABCD的边长为20cm,∠ABC=120°.动点P、Q同时从点A出发,其中P以4cm/s的速度,沿A→B→C的路线向点C运动;Q以2cm/s的速度,沿A→C的路线向点C运动.当P、Q到达终点C时,整个运动随之结束,设运动时间为t秒.(1)在点P、Q运动过程中,请判断PQ与对角线AC的位置关系,并说明理由;(2)若点Q关于菱形ABCD的对角线交点O的对称点为M,过点P且垂直于AB的直线l交菱形ABCD的边AD(或CD)于点N.①当t为何值时,点P、M、N在一直线上?②当点P、M、N不在一直线上时,是否存在这样的t,使得△PMN是以PN为一直角边的直角三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.22.(8分)如图,在平面直角坐标系xOy中,矩形ABCD的边AD=3,A(,0),B(2,0),直线y=kx+b(k≠0)经过B,D两点.(1)求直线y=kx+b(k≠0)的表达式;(2)若直线y=kx+b(k≠0)与y轴交于点M,求△CBM的面积.23.(8分)师徒两人分别加工1200个零件,已知师傅每天加工零件的个数是徒弟每天加工零件个数的1.5倍,结果师傅比徒弟少用10天完成,求徒弟每天加工多少个零件?24.(8分)如图,在ABC中,∠C=90º,BD是ABC的一条角一平分线,点O、E、F分别在BD、BC、AC上,且四边形OECF是正方形,(1)求证:点O在∠BAC的平分线上;(2)若AC=5,BC=12,求OE的长25.(10分)平面直角坐标系中,直线y=2kx-2k(k>0)交y轴于点B,与直线y=kx交于点A.(1)求点A的横坐标;(2)直接写出的x的取值范围;(3)若P(0,3)求PA+OA的最小值,并求此时k的值;(4)若C(0,2)以A,B,C,D为顶点的四边形是以BC为一条边的菱形,求k的值.26.(10分)某校举办了一次趣味数学党赛,满分100分,学生得分均为整数,这次竞赛中,甲、乙两组学生成绩如下(单位:分)甲组:30,60,60,60,60,60,70,90,90,100乙组:50,60,60,60,70,70,70,70,80,90.组别平均分中位数方差甲组68a376乙组b70(1)以生成绩统计分析表中a=_________分,b=_________分.(2)小亮同学说:“这次赛我得了70分,在我们小组中属中游略偏上!”双察上面表格判断,小亮可能是甲、乙哪个组的学生?并说明理由。(3)计算乙组成的方差,如果你是该校数学竞赛的教练员,现在需要你选一组同学代表学校参加复赛,你会进择哪一组?并说明理由。

参考答案一、选择题(每小题3分,共30分)1、A【解析】

利用一次函数的性质得到k>0,则可判断直线y=kx+1经过第一、三象限,然后利用直线y=kx+1与y轴的交点为(0,1)可判断直线y=kx+1不经过第四象限.【详解】∵y=kx+1,y随x的增大而增大,∴k>0,∴直线y=kx+1经过第一、三象限,而直线y=kx+1与y轴的交点为(0,1),∴直线y=kx+1经过第一、二、三象限,不经过第四象限.故选:A.【点睛】本题考查了一次函数的性质:对于一次函数y=kx+b,当k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.2、B【解析】试题分析:根据概率的计算法则可得:甲袋P(摸到黑球)=;乙袋P(摸到黑球)=.根据可得:从乙袋摸到黑球的概率较大.考点:概率的计算3、D【解析】

根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【详解】A.调查一批新型节能灯泡的使用寿命适合抽样调查;B.调查盐城市中小学生的课外阅读时间适合抽样调查;C.对全市中学生观看电影《流浪地球》情况的调查适合抽样调查;D.对量子通信卫星的零部件质量情况的调查必须进行全面调查,故选D.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4、A【解析】根据函数的增减性判断出图象所在象限,进而得出图象上点的坐标特征,将四个选项的数值代入P(a-1,2)验证即可.解:∵反比例函数,在每个象限内y随着x的增大而增大,∴函数图象在二、四象限,∴图象上的点的横、纵坐标异号.A、a=0时,得P(-1,2),故本选项正确;B、a=1时,得P(0,2),故本选项错误;C、a=2时,得P(1,2),故本选项错误;D、a=3时,得P(2,2),故本选项错误.故选A.此题考查了反比例函数图象上点的坐标特征,要熟悉反比例函数的性质,同时要注意数形结合.5、B【解析】

先看13位于哪两个相邻的整数的平方之间,再将不等式的两边同时开方即可得出答案.【详解】∵∴,故选B.【点睛】本题考查估算无理数的大小,平方根,本题的解题关键是掌握“夹逼法”估算无理数大小的方法.6、B【解析】试题分析:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.将数据按照从小到大的顺序排列为:90,90,1,105,110,根据中位数的概念可得中位数为1.故答案选B.考点:中位数.7、A【解析】

直接利用二次根式的性质分别化简计算得出答案.【详解】A.,正确;B.,不正确;C.2+不能计算,不正确;D.,不正确;故选A.【点睛】此题主要考查了二次根式的性质及二次根式的加减运算,正确掌握二次根式加减运算法则是解题关键.8、B【解析】

利用平行四边形的性质、多边形的外角和、菱形的判定及相似三角形的性质判断后即可确定正确的选项.【详解】解:A、平行四边形的对角线互相平分但不一定相等,故错误,是假命题;B、任意多边形的外角和均为360°,正确,是真命题;C、邻边相等的平行四边形是菱形,故错误,是假命题;D、两个相似比为1:2的三角形对应边上的高之比为1:2,故错误,是假命题,故选:B.【点睛】本题考查了命题的判断,涉及平行四边形的性质、多边形的外角和、菱形的判定及相似三角形的性质等知识点,掌握基本知识点是解题的关键.9、D【解析】

根据中位线定理可证DE∥AC,DF∥BC,EF∥AB,即可得四边形ADEF,四边形DECF,四边形BDFE是平行四边形.即可判断各选项是否正确.【详解】连接DF∵点D,E,F分别是AB,BC,AC的中点∴DE∥AC,DF∥BC,EF∥AB∴四边形ADEF,四边形DECF,四边形BDFE是平行四边形∴△ADF≌△DEF,△BDE≌△DEF,△CEF≌△DEF∴△DEF≌△ADF≌△BDE≌△CEF∴S△ADF=S△BDE=S△DEF=S△CEF.∴S△DEF=S△ABC.故①②③说法正确∵四边形ADEF的周长为2(AD+DE)四边形BDFE的周长为2(BD+DF)且AD=BD,DE≠DF,∴四边形ADEF的周长≠四边形BDFE的周长故④说法错误故选:D.【点睛】本题考查了平行四边形的判定,三角形中位线定理,平行四边形的性质,熟练运用中位线定理解决问题是本题的关键.10、C【解析】分析:对于一元二次方程ax2+bx+c=0(a≠0)的a、b、c分别是二次项系数、一次项系数、常数项.详解:2x2﹣3x﹣5=0的二次项系数、一次项系数、常数项分别为2、﹣3、﹣5.故选C.点睛:本题考查了一元二次方程的一般形式:ax2+bx+c=0(a,b,c是常数且a≠0),特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.二、填空题(每小题3分,共24分)11、84或24【解析】分两种情况考虑:①当△ABC为锐角三角形时,如图1所示,∵AD⊥BC,∴∠ADB=∠ADC=90°,在Rt△ABD中,AB=15,AD=12,根据勾股定理得:BD==9,在Rt△ADC中,AC=13,AD=12,根据勾股定理得:DC==5,∴BC=BD+DC=9+5=14,则S△ABC=BC⋅AD=84;②当△ABC为钝角三角形时,如图2所示,∵AD⊥BC,∴∠ADB=90°,在Rt△ABD中,AB=15,AD=12,根据勾股定理得:BD==9,在Rt△ADC中,AC=13,AD=12,根据勾股定理得:DC==5,∴BC=BD−DC=9−5=4,则S△ABC=BC⋅AD=24.综上,△ABC的面积为24或84.故答案为24或84.点睛:此题考查了勾股定理,利用了分类讨论的数学思想,灵活运用勾股定理是解本题的关键.12、1【解析】

由根与系数的关系可得a+b=﹣2,a2+2a-9=0,继而将a2+a﹣b变形为a2+2a-(a+b),然后将数值代入进行计算即可得.【详解】∵a,b为一元二次方程x2+2x﹣9=0的两根,∴a+b=﹣2,a2+2a-9=0,∴a2+2a=9,∴a2+a﹣b=a2+2a﹣a-b=(a2+2a)-(a+b)=9+2=1,故答案为1.13、6【解析】

直接将点(0,a)代入直线y=2x+6,即可得出a=6.【详解】解:∵直线y=2x+6经过点(0,a),将其代入解析式∴a=6.【点睛】此题主要考查一次函数解析式的性质,熟练掌握即可得解.14、且【解析】

利用一元二次方程的定义和判别式的意义得到m≠1且△=(-2)2-4m>1,然后求出两不等式的公共部分即可.【详解】解:根据题意得m≠1且△=(-2)2-4m>1,

解得m<1且m≠1.故答案为:m<1且m≠1.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=1(a≠1)的根与△=b2-4ac有如下关系:当△>1时,方程有两个不相等的两个实数根;当△=1时,方程有两个相等的两个实数根;当△<1时,方程无实数根.15、1【解析】

根据中心对称的性质判断出阴影部分的面积等于菱形的面积的一半,即可得出结果.【详解】解:∵O是菱形两条对角线的交点,菱形ABCD是中心对称图形,∴△OEG≌△OFH,四边形OMAH≌四边形ONCG,四边形OEDM≌四边形OFBN,∴阴影部分的面积=S菱形ABCD=×(×10×6)=1.故答案为:1.【点睛】本题考查了中心对称,菱形的性质,熟记性质并判断出阴影部分的面积等于菱形的面积的一半是解题的关键.16、14cm或16cm【解析】试题分析:根据题意画出图形,由平行四边形得出对边平行,又由角平分线可以得出△ABE为等腰三角形,然后分别讨论BE=2cm,CE=3cm或BE=3cm,CE=2cm,继而求得答案.解:如图,∵四边形ABCD为平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵AE为角平分线,∴∠DAE=∠BAE,∴∠AEB=∠BAE,∴AB=BE,∴①当AB=BE=2cm,CE=3cm时,则周长为14cm;②当AB=BE=3cm时,CE=2cm,则周长为16cm.故答案为14cm或16cm.考点:平行四边形的性质.17、【解析】

根据二次根式的定义即可求解.【详解】依题意写出一个二次根式为.【点睛】此题主要考查二次根式的定义,解题的关键是熟知二次根式的特点.18、5吨【解析】

找中位数要把数据从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【详解】表中数据为从小到大排列,吨处在第10位、第11位,为中位数,故这组数据的中位数是吨.故答案为:吨.【点睛】考查了中位数,将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.三、解答题(共66分)19、(1)见解析;(2)1【解析】

(1)根据等边三角形的性质得到AB=AC,∠C=∠CAB=10°,根据全等三角形的性质得到∠ABE=∠CAF,于是得到结论;(2)根据相似三角形的性质即可得到结论.【详解】(1)证明:∵△ABC为等边三角形,∴AB=AC,∠C=∠CAB=10°,又∵AE=CF,在△ABE和△CAF中,∴∴∠ABE=∠CAF,∵∠AEB=∠BEA,∴(有两个角对应相等的两个三角形相似);(2)解:∵∴,∵BE=3AE,AP=2,∴AB=1,∴等边的边长是1.【点睛】本题考查了全等三角形的证明方法中的边角边定理(两个三角形中有两条边对应相等,并且这两条边的夹角也对应相等,则这两个三角形全等);两个三角形相似的证明方法之一:两个三角形有两个角对应相等,则这两个三角形相似.熟记并灵活运用这两种方法是解本题的关键.20、(1)见解析;(2)见解析;(3).【解析】分析:(1)先证明四边形ABCD是平行四边形,然后证明它是菱形即可.(2)由(1)已知四边形ABCD是菱形,所以当△ABD是直角三角形时,四边形ABCD是正方形.(3)将线段AC顺时针方向旋转60°得到线段CE,并连接AE,点到直线的距离垂线段最短,所以AP1垂直CE时,AP1取最小值,点P1在E点,AP1取最大值,即可求解.详解:证明:(1)AB=AD,CB=CD,∴∠ABD=∠ADB,∠CBD=∠CDB,∵AB∥CD,∴∠ABD=∠CDB,∴∠ADB=∠CBD,∴AD∥BC,∴四边形ABCD是平行四边形.又∵AB=AD,∴四边形ABCD是菱形.(2)要使四边形ABCD是正方形,则∠A=∠ABC=∠C=∠ADC=90°,∴当△ABD是直角三角形时,即∠BAD=90°时,四边形ABCD是正方形;(3)以点C为中心,将线段AC顺时针方向旋转60°得到线段CE,由题意可知,点P1在线段CE上运动.连接AE,∵AC=CE,∠ACE=60°,∴△ACE为等边三角形,∴AC=CE=AE=8,过点A作于点F,∴.当点P1在点F时,线段AP1最短,此时;.当点P1在点E时,线段AP1最长,此时AP1=8,..点睛:本题主要考查了菱形的判定和正方形的判定,结合题意认真分析是解题的关键.21、(1)在点P、Q运动过程中,始终有PQ⊥AC;理由见解析;(1)①当t=时,点P、M、N在一直线上;②存在这样的t,故当t=1或时,存在以PN为一直角边的直角三角形.【解析】

(1)此问需分两种情况,当0<t≤5及5<t≤10两部分分别讨论得PQ⊥AC.(1)①由于点P、M、N在一直线上,则AQ+QM=AM,代入求得t的值.②假设存在这样的t,使得△PMN是以PN为一直角边的直角三角形,但是需分点N在AD上时和点N在CD上时两种情况分别讨论.【详解】解:(1)若0<t≤5,则AP=4t,AQ=1t.则==,又∵AO=10,AB=10,∴==.∴=.又∠CAB=30°,∴△APQ∽△ABO.∴∠AQP=90°,即PQ⊥AC.当5<t≤10时,同理,可由△PCQ∽△BCO得∠PQC=90°,即PQ⊥AC.∴在点P、Q运动过程中,始终有PQ⊥AC.(1)①如图,在Rt△APM中,∵∠PAM=30°,AP=4t,∴AM=.在△APQ中,∠AQP=90°,∴AQ=AP?cos30°=1t,∴QM=AC-1AQ=10-4t.由AQ+QM=AM得:1t+10-4t=,解得t=.∴当t=时,点P、M、N在一直线上.②存在这样的t,使△PMN是以PN为一直角边的直角三角形.设l交AC于H.如图1,当点N在AD上时,若PN⊥MN,则∠NMH=30°.∴MH=1NH.得10-4t-t=1×,解得t=1.如图1,当点N在CD上时,若PM⊥PN,则∠HMP=30°.∴MH=1PH,同理可得t=.故当t=1或时,存在以PN为一直角边的直角三角形.22、(1)y=-2x+4;(2)S△BCM=1.【解析】

(1)利用矩形的性质,得出点D坐标,再利用待定系数法求得函数解析式;(2)由三角形的面积公式,即可解答.【详解】(1)∵在矩形ABCD中,AD=1,A(,0),B(2,0),∴D(,1),C(2,1).把B(2,0),D(,1)代入y=kx+b(k≠0)得:,解得:,∴直线表达式为:y=-2x+4;(2)连接CM.∵B(2,0),∴OB=2.∴S△BCM=∙BC∙OB=×1×2=1.【点睛】本题主要考查待定系数法求一次函数解析式以及矩形的性质,掌握待定系数法,是解题的关键.23、徒弟每天加工40个零件.【解析】

设徒弟每天加工x个零件,根据工作时间=工作总量÷工作效率,结合师傅比徒弟少用10天完成,即可得出关于x的分式方程.【详解】解:设徒弟每天加工个零件,则师傅每天加工个零件.由题意得:,解得,经检验:是原方程的解.答:徒弟每天加工40个零件.【点睛】本题考查了分式方程的应用.找到关键描述语,找到合适的等量关系是解决问题的关键.24、(1)证明见解析;(2)2.【解析】

(1)考察角平分线定理的性质,及直角三角形全等的判断方法,“HL”;(2)利用全等得到线段AM=BE,AM=AF,利用正方形OECF,得到四边都相等,从而利用OE与BE、AF及AB的关系求出OE的长【详解】解:(1)过点O作OM⊥AB于点M∵正方形OECF∴OE=EC=CF=OF,OE⊥BC于E,OF⊥AC于F∵BD平分∠ABC,OM⊥AB于M,OE⊥BC于E∴OM=OE=OF∵OM⊥AB于M,OE⊥BC于E∴∠AMO=90°,∠AFO=90°∵∴Rt△AMO≌Rt△AFO∴∠MA0=∠FAO∴点O在∠BAC的平分线上(2)∵Rt△ABC中,∠C=90°,AC=5,BC=12∴AB=13∴BE=BM,AM=AF又BE=BC-CE,AF=AC-CF,而CE=CF=OE∴BE=12-OE,AF=5-OE∴BM+A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论