




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省泗洪县数学八年级下册期末调研试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如果ab>0,a+b<0,那么下面各式:①ab=ab;②ab⋅ba=A.①② B.①③ C.①②③ D.②③2.下表记录了甲、乙、丙、丁四名运动员参加男子跳高选拔赛成绩的平均数x与方差s2:甲乙丙丁平均数175173175174方差s23.53.512.515根据表中数据,要从中进选择一名成的绩责好又发挥稳定的运动员参加比赛,应该选择()A.乙 B.甲 C.丙 D.丁3.直线l1:y=kx+b与直线l2:y=bx+k在同一坐标系中的大致位置是()A. B.C. D.4.已知平行四边形ABCD中,∠B=2∠A,则∠A=()A.36° B.60° C.45° D.80°5.如图,点O(0,0),A(0,1)是正方形OAA1B的两个顶点,以OA1对角线为边作正方形OA1A2B1,再以正方形的对角线OA2作正方形OA2A3B2,…,依此规律,则点A7的坐标是()A.(-8,0) B.(8,-8) C.(-8,8) D.(0,16)6.下列图案中,既是轴对称图形又是中心对称图形的是()A. B.C. D.7.若分式有意义,则x应满足的条件是()A. B. C. D.8.下列图形中,中心对称图形有()A.1个 B.2个 C.3 D.4个9.若点P(-1,3)在过原点的一条直线上,则这条直线所对应的函数解析式为()A.y=-3x B.y=xC.y=3x-1 D.y=1-3x10.下列各式成立的是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,平面直角坐标系中,平行四边形的顶点,边落在正半轴上,为线段上一点,过点分别作,交平行四边形各边如图.若反比例函数的图象经过点,四边形的面积为,则的值为__.12.若一次函数中,随的增大而减小,则的取值范围是______.13.如图是甲、乙两人10次射击成绩的条形统计图,则甲、乙两人成绩比较稳定的是________.14.直角三角形的两直角边是3和4,则斜边是____________15.把多项式n(n﹣2)+m(2﹣n)分解因式的结果是_____.16.若方程的两根,则的值为__________.17.已知关于x的分式方程有一个正数解,则k的取值范围为________.18.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的面积为49,则正方形A、B、C、D的面积之和为_____.三、解答题(共66分)19.(10分)如图,△ABC全等于△DEF,点B,E,C,F在同一直线,连接AD,求证:四边形ABED是平行四边形.20.(6分)如图1,已知四边形ABCD是正方形,对角线AC、BD相交于点E,以点E为顶点作正方形EFGH.(1)如图1,点A、D分别在EH和EF上,连接BH、AF,直接写出BH和AF的数量关系;(2)将正方形EFGH绕点E顺时针方向旋转.①如图2,判断BH和AF的数量关系,并说明理由;②如果四边形ABDH是平行四边形,请在备用图中补全图形;如果四方形ABCD的边长为,求正方形EFGH的边长.21.(6分)某公司购进某种矿石原料300吨,用于生产甲、乙两种产品,生产1吨甲产品或1吨乙产品所需该矿石和煤原料的吨数如下表:产品资源甲乙矿石(吨)104煤(吨)48生产1吨甲产品所需成本费用为4000元,每吨售价4600元;生产1吨乙产品所需成本费用为4500元,每吨售价5500元,现将该矿石原料全部用完,设生产甲产品x吨,乙产品m吨,公司获得的总利润为y元.(1)写出m与x之间的关系式(2)写出y与x之间的函数表达式,并写出自变量的范围(3)若用煤不超过200吨,生产甲产品多少吨时,公司获得的总利润最大,最大利润是多少?22.(8分)解答下列各题:(1)计算:;(2)当时,求代数式的值.23.(8分)如图,直线经过矩形的对角线的中点,分别与矩形的两边相交于点、.(1)求证:;(2)若,则四边形是______形,并说明理由;(3)在(2)的条件下,若,,求的面积.24.(8分)小红同学根据学习函数的经验,对新函数的图象和性质进行了如下探究,请帮她把探究过程补充完整.第一步:通过列表、描点、连线作出了函数的图象…-6-5-4-3-1012……-1.5-2-3-66321.5…第二步:在同一直角坐标系中作出函数的图象(1)观察发现:函数的图象与反比例函数的图象都是双曲线,并且形状也相同,只是位置发生了改变.小红还发现,这两个函数图像既是中心对称图形,又是轴对称图形,请你直接写出函数的对称中心的坐标.(2)能力提升:函数的图象可由反比例函数的图象平移得到,请你根据学习函数平移的方法,写出函数的图象可由反比例函数的图象经过怎样平移得到?(3)应用:在所给的平面直角坐标系中画出函数的图像,若点,在函数的图像上,且时,直接写出、的大小关系.25.(10分)如图,一次函数的图象与反比例函数的图象交于,两点.(1)试确定上述反比例函数和一次函数的表达式;(2)当为何值时反比例函数值大于一次函数的值;(3)当为何值时一次函数值大于比例函数的值;(4)求的面积.26.(10分)为了提高学生书写汉字的能力,增强保护汉字的意识,某校举办了“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为(分),且(无满分),将其按分数段分为五组,绘制出以下不完整表格:组别成绩(分)频数(人数)频率一2二100.2三12四0.4五6请根据表格提供的信息,解答以下问题:(1)本次决赛共有__________名学生参加;(2)直接写出表中:_______________________(3)请补全右面相应的频数分布直方图;(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为__________.
参考答案一、选择题(每小题3分,共30分)1、D【解析】
先根据ab>0,a+b<0,判断出a、b的符号,再逐个式子分析即可.【详解】∵ab>0,a+b<0,∴a<0,b<0,∴ababab÷a故选D.【点睛】本题考查了二次根式的性质,熟练掌握性质是解答本题的关键.a2=a=a(a≥0)-a(a<0),ab=a⋅ba≥0,b≥02、B【解析】
根据方差的意义先比较出甲、乙、丙、丁的大小,再根据平均数的意义即可求出答案.【详解】∵=3.5,=3.5,=12.5,=15,∴=<<,∵=175,=173,.>,∴从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择甲,故选B.【点睛】本题考查了平均数和方差,一般地设n个数据,x1,x2,…xn的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.3、C【解析】
根据一次函数的系数与图象的关系依次分析选项,找k、b取值范围相同的即得答案【详解】解:根据一次函数的系数与图象的关系依次分析选项可得:A、由图可得,y1=kx+b中,k<0,b<0,y2=bx+k中,b>0,k<0,b、k的取值矛盾,故本选项错误;B、由图可得,y1=kx+b中,k>0,b<0,y2=bx+k中,b>0,k>0,b的取值相矛盾,故本选项错误;C、由图可得,y1=kx+b中,k>0,b<0,y2=bx+k中,b<0,k>0,k的取值相一致,故本选项正确;D、由图可得,y1=kx+b中,k>0,b<0,y2=bx+k中,b<0,k<0,k的取值相矛盾,故本选项错误;故选:C.【点睛】本题主要考查了一次函数的图象性质,要掌握它们的性质才能灵活解题.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.4、B【解析】
根据平行四边形的性质得出BC∥AD,推出∠A+∠B=180°,求出∠A的度数即可.【详解】∵四边形ABCD是平行四边形,∴BC∥AD,∴∠A+∠B=180°.∵∠B=2∠A,∴∠A=60°.故选B.【点睛】本题考查了平行四边形的性质,平行线的性质的应用,关键是平行四边形的邻角互补.5、C【解析】
根据正方形的性质,依次可求A2(2,0),A3(2,2),A4(0,-4),A5(-4,-4),A6(-8,0),A7(-8,8).【详解】解:∵O(0,0),A(0,1),∴A1(1,1),∴正方形对角线OA1=,∴OA2=2,∴A2(2,0),∴A3(2,2),∴OA3=2,∴OA4=4,∴A4(0,-4),A5(-4,-4),A6(-8,0),A7(-8,8);故选:C.【点睛】本题考查点的规律;利用正方形的性质,结合平面内点的坐标,探究An的坐标规律是解题的关键.6、B【解析】
根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误.故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.7、A【解析】
本题主要考查分式有意义的条件:分母不能为0【详解】解:∵x-2≠0,
∴x≠2,
故选:A.【点睛】本题考查的是分式有意义的条件,当分母不为0时,分式有意义.8、B【解析】
绕一个点旋转180度后所得的图形与原图形完全重合的图形叫做中心对称图形作出判断.【详解】等边三角形不是中心对称图形;平行四边形是中心对称图形;圆是中心对称图形;等腰梯形不是中心对称图形.故选:B.【点睛】此题考查中心对称图形,解题关键在于识别图形9、A【解析】设这条过原点的直线的解析式为:y=kx,∵该直线过点P(-1,3),∴-k=3,即k=-3,∴这条直线的解析式为:y=-3x.故选A.10、D【解析】
直接利用二次根式的性质分别化简得出答案.【详解】解:A、,故此选项错误;
B、,故此选项错误;
C、,故此选项错误;
D、,正确.
故选:D.【点睛】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.二、填空题(每小题3分,共24分)11、【解析】
过C作CM⊥x轴于点M,由平行四边形DCOE的面积可求得OE,过D作DN⊥x轴于点N,由C点坐标则可求得ON的长,从而可求得D点坐标,代入反比例函数解析式可求得k的值【详解】如图,过C作CM⊥x轴于点M,过D作DN⊥x轴于点N,则四边形CMND为矩形,∵四边形OABC为平行四边形,∴CD∥OE,且DE∥OC,∴四边形DCOE为平行四边形,∵C(2,5),∴OM=2,CM=5,由图可得,S△AOC=S△ABC=S▱ABCO,又∵S△FCP=S△DCP且S△AEP=S△AGP,∴S▱OEPF=S▱BGPD,∵四边形BCFG的面积为10,∴S▱CDEO=S▱BCFG=10,∴S四边形DCOE=OE•CM=10,即5OE=10,解得OE=2,∴CD=MN=2,∴ON=OM+MN=2+2=4,DN=CM=5,∴D(4,5),∵反比例函数y=图象过点D,∴k=4×5=20.故答案为:20.【点睛】本题考查反比例函数系数k的几何意义、平行四边形的性质,解题的关键是明确题意,找出所求问题需要的条件.12、【解析】
在中,当时随的增大而增大,当时随的增大而减小.由此列不等式可求得的取值范围.【详解】解:一次函数是常数)中随的增大而减小,,解得,故答案为:.【点睛】本题主要考查一次函数的增减性,掌握一次函数的增减性是解题的关键,13、乙【解析】∵通过观察条形统计图可知:乙的成绩更整齐,也相对更稳定,∴甲的方差大于乙的方差,∴乙的成绩比较稳定.故答案为乙.点睛:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.14、1【解析】
在直角三角形中,已知两直角边根据勾股定理可以计算斜边.【详解】在直角三角形中,三边边长符合勾股定理,已知两直角边为3、4,则斜边边长==1,故答案为1.【点睛】本题考查了直角三角形中的运用,本题中正确的运用勾股定理求斜边的长是解题的关键.15、(n﹣2)(n﹣m).【解析】
用提取公因式法分解因式即可.【详解】n(n﹣2)+m(2﹣n)=n(n﹣2)-m(n-2)=(n﹣2)(n﹣m).故答案为(n﹣2)(n﹣m).【点睛】本题考查了用提公因式法进行因式分解;一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.16、1【解析】
根据根与系数的关系求出,代入即可求解.【详解】∵是方程的两根∴=-=4,==1∴===4+1=1,故答案为:1.【点睛】此题主要考查根与系数的关系,解题的关键是熟知=-,=的运用.17、k<6且k≠1【解析】分析:根据解分式方程的步骤,可得分式方程的解,根据分式方程的解是正数,可得不等式,解不等式,可得答案,并注意分母不分零.详解:,方程两边都乘以(x-1),得x=2(x-1)+k,解得x=6-k≠1,关于x的方程程有一个正数解,∴x=6-k>0,k<6,且k≠1,∴k的取值范围是k<6且k≠1.故答案为k<6且k≠1.点睛:本题主要考查了解分式方程、分式方程的解、一元一次不等式等知识,能根据已知和方程的解得出k的范围是解此题的关键.18、1【解析】
根据勾股定理计算即可.【详解】解:最大的正方形的面积为1,由勾股定理得,正方形E、F的面积之和为1,∴正方形A、B、C、D的面积之和为1,故答案为1.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.三、解答题(共66分)19、见解析【解析】
根据全等三角形的性质得到AB∥DE且AB=DE,即可证明四边形ABED是平行四边形.【详解】∵△ABC≌△DEF∴∠B=∠DEF,AB=DE∴AB∥DE.∴AB=DE,AB∥DE∴四边形ABED是平行四边形.【点睛】此题主要考查平行四边形的判定,解题的关键是熟知全等三角形的性质及平行四边形的判定定理.20、(1)见解析;(2)①BH=AF,理由见解析,②正方形EFGH的边长为.【解析】
(1)根据正方形的对角线互相垂直平分可得AE=BE,∠BEH=∠AEF=90°,然后利用“边角边”证明△BEH和△AEF全等,根据全等三角形对应边相等即可得证;
(2)①连接EG,根据正方形的性质得到AE=BE,∠BEA=90°,EF=EH,∠HEF=90°,根据全等三角形的性质即可得到结论;
②如备用图,根据平行四边形的性质得到AH∥BD,AH=BD,于是得到∠EAH=∠AEB=90°,根据勾股定理即可得到结论;【详解】(1)在正方形ABCD中,AE=BE,∠BEH=∠AEF=90°,∵四边形EFGH是正方形,∴EF=EH,∵在△BEH和△AEF中,∴△BEH≌△AEF(SAS),∴BH=AF;(2)①BH=AF,理由:连接EG,∵四边形ABCD是正方形,∴AE=BE,∠BEA=90°,∵四边形EFGH是正方形,∴EF=EH,∠HEF=90°,∴∠BEA+∠AEH=∠HEF+∠AEH,即∠BEH=∠AEF,在△BEH与△AEF中,,∴△BEH≌△AEF,∴BH=AF;②如备用图,∵四边形ABDH是平行四边形,∴AH∥BD,AH=BD,∴∠EAH=∠AEB=90°,∵四方形ABCD的边长为,∴AE=BE=CE=DE=1,∴EH===,∴正方形EFGH的边长为.【点睛】本题考查了正方形的性质,旋转的性质,全等三角形的判定和性质,勾股定理,正确作出图形是解题的关键.21、(1)m=75-2.5x;(2)y=-1900x+75000(0≤x≤30);(3)生产甲产品25吨时,公司获得的总利润最大,最大利润是27500元.【解析】
(1)∵生产甲产品x吨,则用矿石原料10x吨.∴生产乙产品用矿石原料为(300-10x)吨,由此得出;(2)先求出生产1吨甲、乙两种产品各获利多少,然后可求出获得的总利润.
(3)由于总利润y是x的一次函数,先求出x的取值范围,再根据一次函数的增减性,求得最大利润.【详解】(1)m与x之间的关系式为(2)生产1吨甲产品获利:4600-4000=600生产1吨乙产品获利:5500-4500=1000y与x的函数表达式为:(0≤x≤30)(3)根据题意列出不等式解得x≥25又∵0≤x≤30∴25≤x≤30∵y与x的函数表达式为:y=-1900x+75000y随x的增大而减小,∴当生产甲产品25吨时,公司获得的总利润最大y最大=-1900×25+75000=27500(元).【点睛】本题考查的知识点是用函数的知识解决实际问题,解题关键是注意自变量的取值范围还必须使实际问题有意义.22、(1)(2)1.【解析】
(1)根据实数的运算法则即可化简;(2)根据整式的运算法则进行化简即可求解.【详解】解:(1)原式.(2)原式,将代入得【点睛】此题主要考查实数的运算,解题的关键是熟知实数的运算法则与整式的运算.23、(1)证明见解析;(2)菱,理由见解析;(3).【解析】
(1)根据矩形的性质得到AD∥BC,根据平行线的性质得到∠EDO=∠FBO,由全等三角形的判定定理即可得到结论;(2)根据平行四边形的判定定理得到四边形BEDF是平行四边形,由菱形的判定定理即可得到结论;(3)根据勾股定理得到,设BE=DE=x,得到AE=8-x,根据勾股定理列方程得到,根据三角形的面积公式即可得到结论.【详解】解:(1)∵四边形ABCD是矩形,∴AD∥BC,∴∠EDO=∠FBO,∵点O是BD的中点,∴BO=DO,在△BOF与△DOE中,,∴△BOF≌△DOE(ASA),∴OE=OF;(2)四边形BEDF是菱形,理由:∵OE=OF,OB=OD,∴四边形BEDF是平行四边形,∵EF⊥BD,∴平行四边形BEDF是菱形;故答案为菱;(3)∵四边形ABCD是矩形,∴∠A=90°,∵AD=8,BD=10,,设BE=DE=x,∴AE=8﹣x,∵AB2+AE2=BE2,∴62+(8﹣x)2=x2,解得:,∴BE=,∵BO=BD=5,∴OE=,∴△BDE的面积.【点睛】本题考查了矩形性质,平行四边形的判定,菱形的判定和性质,全等三角形的判定与性质,勾股定理等知识;熟练掌握矩形的性质,证明四边形是菱形是解决问题的关键.24、(1)观察发现:;(2)能力提升:函数的图象可由反比例函数的图象向左平移2个单位平移得到;(3)应用:见解析,.【解析】
(1)根据函数的图象,可得出结论;(2)根据平移的规律即可求解;(3)根据函数图象即可求得.【详解】解:(1)(2)函数的图象可由反比例函数的图象向左平移2个单位平移得到.(3)画图如图【点睛】本题考查了函数的图象与性质,解题的关键是理解题意,灵活运用所学知识解决问题.25、(1);;(2)当或时,反比例函数值大于一次函数的值;(3)当或时,一次函数值大于比例函数的值;(4).【解析】
(1)把A的坐标代入反比例函数的解析式即可求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 学校食堂2025年上半年工作计划实施总结
- 2024年山东东营金茂铝业高科技有限公司招聘真题
- 2024年福建水投集团招聘真题
- 樱黄素减轻大鼠脑缺血再灌注损伤的作用及机制研究
- 湖南省2024-2025学年高三下学期第三次适应性考试数学试题
- 2025年二手奢侈品鉴定标准与交易规范对市场规范化的促进作用报告
- 2025年二手交易电商平台信用评级与信用数据共享报告
- 2025年二手电商信用风险管理与信用评分模型构建报告001
- 人力资源管理师考试试题及答案
- 2025山东滨州国有资本投资运营集团有限公司招聘28人笔试参考题库附带答案详解
- 2025年苹果树种植行业市场需求分析
- 露天煤矿安全用电知识课件
- 食品安全自查、从业人员健康管理、进货查验记录、食品安全事故处置等保证食品安全的规章制度
- 2024湖南职高对口高考美术类本科指标人数
- 2025年中考语文二轮复习:字词积累 练习题(含答案)
- 基于PLC的自动生产线控制系统的设计毕业论文
- 会计研究方法论 第4版 课件 第10章 因果关系推断与内生性问题处理
- 居民急救知识培训课件
- 南京市栖霞区2024-2025学年五下数学期末达标检测试题含答案
- 第六单元《多边形的面积》教材解读课件新课标人教数学五年级上册
- 大数据时代下的企业财务风险管理
评论
0/150
提交评论