2024年千锤百炼高考数学100个热点问题第15炼 求函数的单调区间含答案_第1页
2024年千锤百炼高考数学100个热点问题第15炼 求函数的单调区间含答案_第2页
2024年千锤百炼高考数学100个热点问题第15炼 求函数的单调区间含答案_第3页
2024年千锤百炼高考数学100个热点问题第15炼 求函数的单调区间含答案_第4页
2024年千锤百炼高考数学100个热点问题第15炼 求函数的单调区间含答案_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年千锤百炼高考数学100个热点问题第15炼求函数的单调区间含答案第15炼函数的单调区间单调性是函数的一个重要性质,对函数作图起到决定性的作用,而导数是分析函数单调区间的一个便利工具。求一个已知函数的单调区间是每一个学生的必备本领,在求解的过程中也要学会一些方法和技巧。一、基础知识:1、函数的单调性:设的定义域为,区间,若对于,有,则称在上单调递增,称为单调递增区间。若对于,有,则称在上单调递减,称为单调递减区间。2、导数与单调区间的联系(1)函数在可导,那么在上单调递增此结论可以这样理解:对于递增的函数,其图像有三种类型:,无论是哪种图形,其上面任意一点的切线斜率均大于零。等号成立的情况:一是单调区间分界点导数有可能为零,例如:的单调递增区间为,而,另一种是位于单调区间内但导数值等于零的点,典型的一个例子为在处的导数为0,但是位于单调区间内。(2)函数在可导,则在上单调递减(3)前面我们发现了函数的单调性可以决定其导数的符号,那么由的符号能否推出在的单调性呢?如果不是常值函数,那么便可由导数的符号对应推出函数的单调性。(这也是求函数单调区间的理论基础)3、利用导数求函数单调区间的步骤(1)确定函数的定义域(2)求出的导函数(3)令(或),求出的解集,即为的单调增(或减)区间(4)列出表格4、求单调区间的一些技巧(1)强调先求定义域,一方面定义域对单调区间有限制作用(单调区间为定义域的子集)。另一方面通过定义域对取值的限制,对解不等式有时会起到简化的作用,方便单调区间的求解(2)在求单调区间时优先处理恒正恒负的因式,以简化不等式(3)一般可令,这样解出的解集就是单调增区间(方便记忆),若不存在常值函数部分,那么求减区间只需要取增区间在定义域上的补集即可(简化求解的步骤)(4)若的解集为定义域,那么说明是定义域上的增函数,若的解集为,那么说明没有一个点切线斜率大于零,那么是定义域上的减函数(5)导数只是求单调区间的一个有力工具,并不是唯一方法,以前学过的一些单调性判断方法也依然好用,例如:增+增→增,减+减→减,增→减,复合函数单调性同增异减等。如果能够通过结论直接判断,那么就无需用导数来判定。5、求单调区间的一些注意事项(1)单调区间可以用开区间来进行表示,如果用闭区间那么必须保证边界值在定义域内。例如函数的单调减区间为,若写成就出错了(0不在定义域内)(2)如果增(或减)区间有多个,那么在书写时用逗号隔开,一定不要用并集的符号。有些同学觉得不等式的解集是多个部分时用“”连接,那么区间也一样,这个观点是错误的。并集是指将两个集合的元素合并到一起成为一个集合,用在单调区间上会出现问题。依然以为例,如果写成,那么就意味着从合并在一起的集合中任取两个变量,满足单调减的条件。由性质可知,如果在两个区间里各取一个,是不满足单调减的性质的。6、二阶导函数的作用:①几何意义:导数的符号决定原函数的单调性,对于而言,决定的是的单调性。当时,单调递增,意味着随的增大而增大,由于导数的几何意义为切线斜率,故切线斜率随的增大而增大;同理,当时,单调递减,则切线斜率随的增大而减少。那么在图像上起到什么作用呢?单调增有三种:其不同之处在于切线斜率随自变量变大的变化不同,所以如果说是决定函数单调性的,那么在已知单调性的前提下,能够告诉我们是怎样增,怎样减的,进而对作图的精细化提供帮助。(1)当,其图像特点为:我们称这样的函数为下凸函数(2)当,其图像特点为:我们称这样的函数为上凸函数②代数意义:当通过无法直接判断符号时,可通过二阶导函数先确定一阶导函数的单调性,再看能否利用条件判断符号。二、典型例题:例1:下列函数中,在上为增函数的是()A.B.C.D.思路:本题只需分析各个函数在上的单调性即可。A选项通过其图像可知显然在不单调;B选项,当时,,所以在单调递增;C选项可得在单调递减,在单调递增;D选项,可得在单调递增,在单调递减。综上,B符合条件答案:B例2:函数的单调递增区间是()A.B.C.D.思路:先分析的定义域:,再观察解析式可得可视为函数的复合函数,根据复合函数单调性同增异减的特点,可分别分析两个函数的单调性,对于而言,对是减函数。所以如要求得增区间,则中对也应为减函数。结合定义域可得的单调增区间为答案:D例3:求函数的单调区间(2009宁夏,21题(1))思路:第一步:先确定定义域,定义域为,第二步:求导:,第三步:令,即第四步:处理恒正恒负的因式,可得第五步:求解,列出表格例4:求函数的单调区间解:定义域令导数解得:(通过定义域大大化简解不等式的过程)例5:求函数的单调区间解:令,即解不等式,解得的单调区间为↘↗↘例6:求函数的单调区间思路:函数还有绝对值,从而考虑先通过分类讨论去掉绝对值,在求导进行单调性分析解:,当时,为减函数当时,在单调递增综上所述:在单调递减,在单调递增小炼有话说:(1)对于含绝对值的函数,可通过对绝对值内表达式的符号进行分类讨论可去掉绝对值,从而将函数转变为一个分段函数。(2)本题在时,利用之前所学知识可直接判断出单调递减,从而简化步骤。导数只是分析函数单调性的一个工具,若能运用以前所学知识判断单调性,则直接判断更为简便例7:(1)若函数在区间单调递增,则的取值集合是__________(2)若函数的递增区间是,则的取值集合是___________解:(1)思路:,由在单调递增可得:,。(2)思路:的递增区间为,即仅在单调递增。令,若,则单调递增区间为不符题意,若,则时,。所以答案:(1),(2)小炼有话说:注意两问的不同之处,在(1)中,只是说明在区间单调递增,那么也可以在其他区间单调递增,即是增区间的子集。而(2)明确提出单调增区间为,意味着不再含有其他增区间,为单调区间的分界点,从而满足条件的只有一个值。要能够区分这两问在叙述上的不同。例8:,若在上存在单调递增区间,则的取值范围是_______思路:,有已知条件可得:,使得,即,只需,而,所以答案:小炼有话说:(1)已知在某区间的单调性求参数范围问题,其思路为通过导数将问题转化成为不等式恒成立或不等式能成立问题,进而求解,要注意已知函数单调递增(减)时,其导函数(),勿忘等号。(2)在转化过程中要注意单调区间与不等式成立问题中也有一些区别,例如:若把例6的条件改为“在上存在单调递增区间”,则在求解的过程中,靠不等式能成立问题的解法解出的的范围时,但当时,满足不等式的的解仅有,不能成为单调区间,故舍去,答案依然为例9:设函数(其中是自然对数的底数),若在其定义域内为单调函数,求实数的取值范围思路:条件中只是提到为单调函数,所以要分单调增与单调减两种情况考虑。无非就是恒成立或恒成立,进而求出的范围即可解:若在单调递增,则恒成立即,设则若在单调递减,则恒成立即,设则,且当或时,综上所述:或例10:若函数在区间内单调递增,则取值范围是()A.B.C.D.思路:先看函数的定义域,则在恒成立,可看成是由的复合函数,故对进行分类讨论。当时,单调递增,所以需单调递增,,与矛盾;当时,单调递减,所以需单调递减,答案:B小炼有话说:(1)在本题中要注意参数对定义域的影响。单调区间是定义域的子集,所以在求参数范围时要满足定义域包含所给区间。这可能会对参数的取值有所限制。也是本题的易错点(2)对于指数结构与对数结构的函数(如本题中的),可分别分析底数与1的大小(对数的增减性)与真数的单调性,然后判断整个函数的单调性。理论依据为复合函数的单调性特点(同增异减),故本题对底数以1为分界点分类讨论,并依此分析真数的情况。第16炼含参数函数的单调区间在高考导数的综合题中,所给函数往往是一个含参数的函数,且导函数含有参数,在分析函数单调性时面临的分类讨论。本节通过一些例题总结参数讨论的方法与技巧,便于更加快速准确的分析含参数函数的单调区间。一、基础知识:1、导数解单调区间的步骤:利用导数求函数单调区间的方法,大致步骤可应用到解含参函数的单调区间。即确定定义域→求出导函数→令解不等式→得到递增区间后取定义域的补集(减区间)→单调性列出表格2、求含参函数单调区间的实质——解含参不等式,而定义域对的限制有时会简化含参不等式的求解3、求单调区间首先确定定义域,并根据定义域将导数不等式中恒正恒负的项处理掉,以简化讨论的不等式4、关于分类讨论的时机与分界点的确定(1)分类时机:并不是所有含参问题均需要分类讨论,例如解不等式:,其解集为,中间并没有进行分类讨论。思考:为什么?因为无论参数为何值,均是将移到不等号右侧出结果。所以不需要分类讨论,再例如解不等式,第一步移项得:(同样无论为何值,均是这样变形),但是第二步不等式两边开方时发现的不同取值会导致不同结果,显然是负数时,不等式恒成立,而是正数时,需要开方进一步求解集,分类讨论由此开始。体会:什么时候开始分类讨论?简而言之,当参数的不同取值对下一步的影响不相同时,就是分类讨论开始的时机。所以一道题是否进行分类讨论不是一开始就决定的,而是在做的过程中遇到不同值导致不同步骤和结果,就自然的进行分类讨论。(2)分界点的确定:分类讨论一定是按参数的符号分类么?不一定。要想找好分界点,首先要明确参数在问题中所扮演的角色。例如上面的不等式,所扮演的角色是被开方数,故能否开方是进行下一步的关键,那自然想到按的符号进行分类讨论。(3)当参数取值为一个特定值时,可将其代入条件进行求解(4)当参数扮演多个角色时,则以其中一个为目标进行分类,在每一大类下再考虑其他角色的情况以及是否要进行进一步的分类。例如:解不等式:,可得:此时扮演两个角色,一个是的系数,将决定解集是小大根之外还是小大根之间,另一个角色是决定的大小,进而要和来角逐大小根。那么在处理时可先以其中一个为主要目标,例如以系数的正负,进行分类。①当时,此时不等式的解集为小大根之间,而由于,以此为前提,故小大根不存在问题,解集为②当时,不等式变为③当时,不等式解集为小大根之外,而,的大小由的取值决定,所以自然考虑再结合小大根进行进一步讨论了。(重视①③的对比)时,不等式解集为时,不等式化为时,不等式解集为希望通过此例能够体会分类讨论的时机与分界,若能领悟,其分类讨论不再是一个难点,而是有线索可循了。二、典型例题:例1:已知函数,求的单调区间解:定义域令,所解不等式为当时,即解不等式的单调区间为:当时,恒成立为增函数:例2:已知函数(1)若的图像在处的切线与直线垂直,求实数的值(2)求函数的单调区间解:(1)由切线与垂直可得:(2)思路:导函数,令解单调增区间,得到含参不等式。分类讨论时注意扮演两个角色:一个是影响最高次项的符号,一个是影响方程的根解:令即①(将的范围分类后,要善于把每一类的范围作为已知条使用件,在本题中使用的条件使得大小能够确定下来,避免了进一步的分类)的单调区间为:②的单调区间为:例3:已知函数,求的单调区间解:定义域:,令,可得:即当时,的单调区间为:当时,为增函数当时,恒成立为增函数例4:讨论函数的单调区间解:令即(注意定义域为,所以导函数分母恒正,去掉后简化所解不等式)①时(求解需要除以后开方,进而两个地方均需要分类讨论,先从的符号入手)恒成立,在单调递增②函数为增函数③时(下一步为开方出解集,按的符号进行再分类)当即时,恒成立,在单调递减当即时,解得:的单调区间为:小炼有话说:本题定义域为,故对单调区间既有促进作用又有制约作用:促进作用体现在对所解不等式的简化,请大家养成一个良好习惯,当已知变量范围时,一边关注范围一边解不等式。制约作用体现在单调区间应该是定义域的子集,所以在时,表格中自变量的区间是从处开始分析的例5:已知函数,讨论的单调性解:定义域为令即考虑(左边无法直接因式分解,考虑二次函数是否与轴有交点)①时恒成立,故在单调递增②时的解的解集为的单调区间为:③时在单调递增小炼有话说:本题亮点在于②③的讨论,判断极值点是否在定义域中。进而确定单调性。除了解出根来判断符号之外,本题还可以利用韦达定理进行判断。,说明两根同号,而,说明的符号决定的正负,从而在的情况下进行再次分类讨论例6:已知函数,其中.(1)当时,求曲线在点处的切线方程;(2)求的单调区间.解:(1)切线方程为:,即(2),令,即解不等式:①当时,解得:,故的单调区间为:②当时,所以解得:故的单调区间为:③,则,常值函数不具备单调性④时,解得:或故的单调区间为:例7:已知函数.求函数的单调区间.解:令,即,(参数角色:①的大小,②是否在定义域内,以①为目标分类)①即(此时一定在定义域中,故不再分类)不等式的解集为或的单调区间为:↗↘↗②在单调递增③,要根据是否在进行进一步分类当时,不等式的解集为或的单调区间为:↗↘↗当时,则,不等式的解集为,的单调区间为:↘↗小炼有话说:(1)在求单调区间时面临一个的根是否在定义域中的问题,由此也可体会到定义域对单调区间“双刃剑”的作用,一方面缩小自变量的范围从而有利于不等式的化简,另一方面也圈住了单调区间,极值点所在的范围。(2)体会参数起到多重作用时,是如何进行分类讨论的,以及在某个大前提下,参数讨论也可进行些简化。例8:已知函数,求的单调区间解:定义域令,即解不等式(1)当时,可得,则不等式的解为的单调区间为:(2)当时,①时,即,解得或的单调区间为:②,代入到恒成立为增函数③,解得:或的单调区间为:例9:设函数,求的单调区间;解:,令即(1)则恒成立在上单调递增(2)或①当时,解得,单调区间为:②当时,解得:或单调区间为:例10:已知函数,其中,试讨论的单调性思路:,可令,则需解不等式,由于的奇偶不同会导致解集不同,所以可对分奇偶讨论解:令解得当为奇数时,为偶数,可解得:的单调区间为:当为偶数时,为奇数,可解得:的单调区间为:第17炼函数的极值一、基础知识:1、函数极值的概念:(1)极大值:一般地,设函数在点及其附近有定义,如果对附近的所有的点都有,就说是函数的一个极大值,记作,其中是极大值点(2)极小值:一般地,设函数在点及其附近有定义,如果对附近的所有的点都有,就说是函数的一个极小值,记作,其中是极小值点极大值与极小值统称为极值2、在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值。请注意以下几点:(1)极值是一个局部概念:由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小并不意味着它在函数的整个的定义域内最大或最小(2)函数的极值不是唯一的即一个函数在某区间上或定义域内极大值或极小值可以不止一个(3)极大值与极小值之间无确定的大小关系即一个函数的极大值未必大于极小值(4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点3、极值点的作用:(1)极值点为单调区间的分界点(2)极值点是函数最值点的候选点4、费马引理:在处可导,那么为的一个极值点说明:①前提条件:在处可导②单向箭头:在可导的前提下,极值点导数,但是导数不能推出为的一个极值点,例如:在处导数值为0,但不是极值点③费马引理告诉我们,判断极值点可以通过导数来进行,但是极值点的定义与导数无关(例如:在处不可导,但是为函数的极小值点)5、求极值点的步骤:(1)筛选:令求出的零点(此时求出的点有可能是极值点)(2)精选:判断函数通过的零点时,其单调性是否发生变化,若发生变化,则该点为极值点,否则不是极值点(3)定性:通过函数单调性判断出是极大值点还是极小值点:先增后减→极大值点,先减后增→极小值点6、在综合题分析一个函数时,可致力于求出函数的单调区间,当求出单调区间时,极值点作为单调区间的分界点也自然体现出来,并且可根据单调性判断是极大值点还是极小指点,换言之,求极值的过程实质就是求函数单调区间的过程。7、对于在定义域中处处可导的函数,极值点是导函数的一些零点,所以涉及到极值点个数或所在区间的问题可转化成导函数的零点问题。但要注意检验零点能否成为极值点。8、极值点与函数奇偶性的联系:(1)若为奇函数,则当是的极大(极小)值点时,为的极小(极大)值点(2)若为偶函数,则当是的极大(极小)值点时,为的极大(极小)值点二、典型例题:例1:求函数的极值.解:令解得:的单调区间为:极大值的极大值为,无极小值小炼有话说:(1)求极值时由于要判定是否为极值点以及极大值或极小值,所以可考虑求函数的单调区间,进而在表格中加入一列极值点,根据单调性即可进行判断(2)在格式上有两点要求:第一推荐用表格的形式将单调区间与极值点清晰地表示出来,第二在求极值点时如果只有一个极大(或极小)值点,则需说明另一类极值点不存在例2:求函数的极值。解:,令解得:的单调区间为:极小值的极小值为,无极大值小炼有话说:本题若使用解极值点,则也满足,但由于函数通过这两个点时单调性没有发生变化,故均不是极值点。对比两个方法可以体会到求极值点归根结底还是要分析函数的单调区间例3:求函数在上的极值思路:利用求出的单调区间,进而判断极值情况解:令解得:的单调区间为:的极小值为,极大值为小炼有话说:在本题中如果仅令,则仅能解得这一个极值点,进而丢解。对于与,实质上在这两点处没有导数,所以在中才无法体现出来,由此我们可以得到以下几点经验(1)利用来筛选极值点的方法在有些特殊函数中会丢解,此类点往往是不存在导函数的点。例如:中的,是极值点却不存在导数(2)在寻找极值点时,若能求出的单调区间,则利用单调区间求极值点是可靠的例4:已知函数,在点处有极小值,试确定的值,并求出的单调区间。思路:,由极值点条件可得:,两个条件可解出,进而求出单调区间解:在点取得极小值,令,解得或的单调区间为:小炼有话说:关注“在点处有极小值”,一句话表达了两个条件,作为极值点导数等于零,作为曲线上的点,函数值为1,进而一句话两用,得到关于的两个方程。例5:若函数在时有极值,则_________思路:,依题意可得:,可解得:或,但是当时,所以尽管但不是极值点,所以舍去。经检验:符合,答案:小炼有话说:对于使用极值点条件求参数值时,求得结果一定要代回导函数进行检验,看导数值为0的点是否是极值点例6:在处有极小值,则实数为.思路:,为极小值点,,解得:或,考虑代入结果进行检验:时,,可得在单调递增,在单调递减。进而为极小值点符合题意,而当时,,可得在单调递增,在单调递减。进而为极大值点,故不符合题意舍去答案:小炼有话说:在已知极值点求参数范围时,考虑利用极值点导数值等于零的条件,但在解完参数的值后要进行检验,主要检验两个地方:①已知极值点是否仍为函数的极值点②参数的值能否保证极大值或极小值点满足题意。例7:(1)已知函数有两个极值点,则的取值范围是___________(2)已知函数存在极值点,则的取值范围是_________(1)思路:,若有两个极值点,则方程有两个不等实根,从而只需,即或答案:或(2)思路:存在极值点即有实数根,,但是当即时,,不存在极值点,所以方程依然要有两个不等实数根,的范围为或答案:或小炼有话说:本题有以下几个亮点(1)在考虑存在极值点和极值点个数时,可通过导数转化成为方程的根

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论