版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
《机械原理》习题解答机械工程学院目录绪论……………1平面机构的结构分析…………3平面连杆机构………………8凸轮机构及其设计…………15齿轮机构……19轮系及其设计………………26第8章机械运动力学方程…………32第9章平面机构的平衡……………39绪论一、补充题1、复习思考题1)、机器应具有什么特征?机器通常由哪三局部组成?各局部的功能是什么?2〕、机器与机构有什么异同点?3〕、什么叫构件?什么叫零件?什么叫通用零件和专用零件?试各举二个实例。4〕、设计机器时应满足哪些根本要求?试选取一台机器,分析设计时应满足的根本要求。2、填空题1)、机器或机构,都是由组合而成的。2〕、机器或机构的之间,具有确定的相对运动。3〕、机器可以用来人的劳动,完成有用的。4〕、组成机构、并且相互间能作的物体,叫做构件。5〕、从运动的角度看,机构的主要功用在于运动或运动的形式。6〕、构件是机器的单元。零件是机器的单元。7〕、机器的工作局部须完成机器的动作,且处于整个传动的。8〕、机器的传动局部是把原动局部的运动和功率传递给工作局部的。9〕、构件之间具有的相对运动,并能完成的机械功或实现能量转换的的组合,叫机器。3、判断题1)、构件都是可动的。〔〕2〕、机器的传动局部都是机构。〔〕3〕、互相之间能作相对运动的物件是构件。〔〕4〕、只从运动方面讲,机构是具有确定相对运动构件的组合。〔〕5〕、机构的作用,只是传递或转换运动的形式。〔〕6〕、机器是构件之间具有确定的相对运动,并能完成有用的机械功或实现能量转换的构件的组合。〔〕7〕、机构中的主动件和被动件,都是构件。〔〕2填空题答案1〕、构件2〕、构件3〕、代替机械功4〕、相对运动5〕、传递转换6〕、运动制造7〕、预定终端8〕、中间环节9〕、确定有用构件3判断题答案1〕、√2〕、√3〕、√4〕、√5〕、×6〕、√7〕、√第二章机构的结构分析2-7是试指出图2-26中直接接触的构件所构成的运动副的名称。解:a)平面高副b)空间低副c)平面高副2-8将图2-27中机构的结构图绘制成机构运动简图,标出原动件和机架,并计算其自由度。解:b)n=3,=4,=0,F=3×3-2×4=1c)n=3,=4,PH=0,F=3×3-2×4=12-9试判断图2-28中所示各“机构”能否成为机构,并说明理由。解:修改后的机构修改后的机构修改后的机构2-10计算图2-29中所示各机构的自由度,并指出其中是否含有复合铰链、局部自由度或虚约束,说明计算自由度应作何处理。解:a)n=5,=7,有复合铰链:构件3和构件5;构件3和构件1;F=3n-2=3×5-2×7=1b)n=6,=8,PH=1,有局部自由度,有虚约束F=3n-2-=3x6-2x8-1=1d)有虚约束,有复合铰链n=5,=7,=0,F=3n-2-=3×5-2×7-0=1e)有对称虚约束n=5,=7F=3n-2=1f)有对称虚约束n=3,=3,=2F=3n-2-=1g)n=2,=2,=1,n=3,=4有虚约束h)有对称虚约束,n=3,=4F=3n-2=3×3-2×4=1或者:n=4,=5=1,F=3n-2-=3×4-2×5-1=12-12计算图2-30所示各机构的自由度,并在高副低代后,分析组成这些机构的根本杆组即杆组的级别。解:a)n=4,=5,=1F=3n-2-=1所以此机构为III级机构b)n=3,=3,=2F=3n-2-=1c)n=4,=4,=3F=3n-2-=1d)n=6,=8,=1F=3n-2-=1所以此机构为III级机构2-13说明图2-32所示的各机构的组成原理,并判别机构的级别和所含杆组的数目。对于图2-32f所示机构,当分别以构件1、3、7作为原动件时,机构的级别会有什么变化?a)机构的级别:IIb)机构的级别:IIf)当分别以构件1、3、7作为原动件时以构件1作为原动件时,以构件1作为原动件时,机构的级别II以构件3作为原动件时,以构件3作为原动件时,机构的级别:II以构件7作为原动件时,杆组的级别:III以构件7作为原动件时,机构的级别:III2-14绘制图2-33所示机构高副低代后的运动简图,计算机构的自由度。并确定机构所含杆组的数目和级别以及机构的级别。图2-33机构示意图机构高副低代后的运动简图杆组的级别:III所以,机构的级别:III2-15试分析图2-35所示刨床机构的组成,并判别机构的级别。假设以构件4为原动件,那么此机构为几级?解:F=3n-2-=3×5-2×7=1一、假设以构件1为原动件,那么此机构拆分的杆组是:所以此机构为III级二、假设以构件4为原动件,那么此机构拆分的杆组是:所以此机构为II级第三章平面连杆机构3-9图3-54所示平面铰链四杆运动链中,各构件长度分别为,,,。〔1〕判断该机构运动链中四个转动副的类型。〔2〕取哪个构件为机架可得到曲柄摇杆机构。〔3〕取哪个构件为机架可得到双曲柄机构。〔4〕取哪个构件为机架可得到双摇杆机构解:平面连杆机构LAB=55LBC=40LCD=50LAD=25LAB+LAD<LBC+LCD(1)A、D整转副B、C摆转副〔2〕AB或CD为机架时,为曲柄摇杆机构〔3〕AD为机架时,为双曲柄机构〔4〕BC为机架时,为双摇杆机构3-10图3-57所示为一偏置曲柄滑块机构,试求杆AB为曲柄的条件。假设偏距e=0,那么杆AB为曲柄的条件又如何?解:主要分析能否通过极限位置,a+e<b3-11在图3-81所示的铰链四杆机构中,各杆件长度分别为,,,。〔1〕假设取AD为机架,求该机构的极位夹角θ,杆CD的最大摆角和最小传动角〔2〕假设取AB为机架,求该机构将演化为何种类型的机构?为什么?请说明这时C、D两个转动副是周转副还是摆转副。图3-58铰链四杆机构解:由于25+55<40+50,所以lAB+lAD≤lBC+lCD,且以最短杆AB的邻边为机架。故该铰链四杆机构为曲柄摇杆机构。AB为曲柄。1〕以曲柄AB为主动件,作出摇杆CD的极限位置如下图。∴AC1=lAB+lBC=40+25=65AC2=lBC-lAB=40-25=15(1)极位夹角θ:出现在AB与连杆BC重合位置图1行程速比系数K=〔1800+θ〕/〔1800-θ〕≈1.17(2)求摇杆的最大摆角φ,从图1,摇杆的最大摆角φ:φ=∠B1DC1-∠B2DC2(3)最小传动角γmin出现在AB与机架AD重合位置〔分正向重合、反向重合〕如图2。分别求出、,再求最小传动角。图2曲柄处于AB1位置时,传动角γ1==36.860.曲柄处于AB2位置时,传动角γ2=1800-=54.900.现比拟的γ1、γ2大小,最小传动角取γ1、γ2中最小者.∴γmin=36.8602〕取AB为机架,即取最短杆为机架,该机构演化为双曲柄机构。因为在曲柄摇杆机构中取最短杆作为机架,其2个连架杆与机架相连的运动副A、B均为周转副。C、D两个转动副为摆转副。3-15图3-59所示为加热炉炉门的启闭状态,试设计一机构,使炉门能占有图示的两个位置。图3-59题3-15图提示:把门看着是在连杆上,即两个活动铰链中心在门上,同时把固定铰链中心装在炉子的外壁上。3-16试设计一个如图3-60所示的平面铰链四杆机构。设其摇杆的长度,行程速比系数K=1.5,机架的长度,又知摇杆的一个极限位置与机架间的夹角,试求其曲柄的长度和连杆的长度。图3-60题3-16图解:〔符号与课本不太一致〕当行程速比系数K=1.5时,机构的极位夹角为即机构具有急回特性,过固定铰链点A作一条与直线成的直线再与活动铰链点C的轨迹圆相交,交点就是活动铰链点C的另一个极限位置。选定比例尺,作图,如以下图所示。由图可知,有两个交点,即有两组解。直接由图中量取,,。故有两组解。解一:构件AB的长为构件BC的长为摇杆的摆角解二:构件AB的长为构件BC的长为摇杆的摆角3-17如图3-61所示,设破碎机的行程速比系数K=1.2,颚板长度mm,颚板摆角=35º,曲柄长度lAB=80mm。求连杆的长度,并验算最小传动角是否在允许的范围内。图3-61题3-17图3-18试设计一曲柄滑块机构,设滑块的行程速比系数K=1.5,滑块的冲程H=50mm,偏距e=20mm,并求其最大压力角?解:行程速比系数K=1.5,那么机构的极位夹角为选定作图比例,先画出滑块的两个极限位置C1和C2,再分别过点C1、C2作与直线C1C2成的射线,两射线将于点O。以点O为圆心,OC2为半径作圆,再作一条与直线C1C2相距为的直线,该直线与先前所作的圆的交点就是固定铰链点A。作图过程如解题24图所示。直接由图中量取,,所以曲柄AB的长度为连杆BC的长度为解题3-18图解题3-18图最大压力角,提示:出现在曲柄与导路垂直的时候。3-19图3-62所示为一牛头刨床的主传动机构,,,行程速比系数K=2,刨头5的行程H=300mm。要求在整个行程中,刨头5有较小的压力角,试设计此机构。图3-62题3-19图解:〔符号与课本不太一致〕由题可得极位夹角θ=180o×〔k-1〕/〔k+1〕=60o.即摆杆的摆角为60o.曲柄运动到与垂直,其摆杆分别处于左右极限位置、.:曲柄长度=75∴机架的长度=75/sin〔θ/2〕=150mm欲使其刨头的行程H=300mm,即C点运动的水平距离为300mm.∴摆杆的长度=H/2/sin〔θ/2〕=150/sin30o=300mm为了使机构在运动过程中压力角较小,故取刨头5构件的导路在B3F的中点,且⊥.B0F=×cos〔θ/2〕=150×mm∴刨头5构件离曲柄转动中心点的距离为:=--(-)/2=300-150-(300-150×)/2H130H3-22有一曲柄摇杆机构,其摇杆长,摆角,摇杆在两极限位时与机架所成的夹角各为和,机构的行程速比系数K=1.5,设计此四杆机构,并验算最小传动角。解:按照课本的方法作图。3-23试求图3-65所示各机构在图示位置时全部瞬心的位置。〔a〕〔b〕〔c〕〔d〕图3-65题3-23图提示:列出n个构件,画出n边形,同时结合三心定理。〔a〕P23P23(P13)P34P12P14(P24)绝对瞬心:P12、P13、P14;相对瞬心:P23、P34、P24。〔b〕P12P12P12P23(P24)P13、P14在过C点垂直于BC的无穷远处。〔d〕3-24在图3-66所示的机构中,曲柄2顺时针方向匀速转动,角速度试求在图示位置导杆4的角速度的大小和方向。图3-66题3-24图P24P34P23P24P34P23P14P12解:P12在A0,P14在B0,P34在无穷远n=4个根据P24是的瞬心,两个构件在该点的绝对速度相等。n(n-1)第四章凸轮机构4-10图4-40所示为一尖端移动从动件盘凸轮机构从动件的运动线图。试在图上补全各段的位移、速度及加速度曲线,并指出在哪些位置会出现刚性冲击?哪些位置会出现柔性冲击?根据关系式,,补全后的从动件位移、速度和加速度线图如上右图所示。在运动的开始时点0、以及处加速度有限突变,所以在这些位置有柔性冲击;在和处速度有限突变,加速度无限突变,在理论上将会产生无穷大的惯性力,所以在这些位置有刚性冲击。4-13设计一偏置移动滚子从动件盘形凸轮机构。凸轮以等角速度顺时针转动,基圆半径,滚子半径,凸轮轴心偏于从动件轴线右侧,偏距e=10mm。从动件运动规律如下:当轮转过时,从动件以简谐运动规律上升30mm;当凸轮接着转过时从动件停歇不动;当凸轮再转过时,从动件以等加减速运动返回原处;当凸轮转过一周中其余角度时,从动件又停歇不动。反转法画图4-6设计一对心移动平底从动件盘形凸轮机构。基圆半径,从动件平底与导路中心线垂直,凸轮顺时针等速转动。从动件运动规律如下:当凸轮转过时,从动件以简谐运动规律上升30mm;当凸轮再转过时,从动件以简谐运动规律返回原处;当凸轮转过其余时,从动件又停歇不动。4-7在图4-43所示的凸轮机构中,摆杆在起始位置时垂直于,,,滚子半径,凸轮以等角速度顺时针转动。从动件运动规律如下:当凸轮再转过时,从动件以摆线运动规律向上摆动;当凸轮再转过时,从动件以摆线运动规律返回物原来位置,当凸轮转过其余时,从动件又停歇不动。4-15试用作图法求出图4-47所示凸轮机构中当凸轮从图示位置转过后机构的压力角,并在图上标注出来。反转法画图4-16在图4-48所示的凸轮机构中,从动件的起始上升点均为C点。1〕试在图上标注出从C点接触时,凸轮转过的角度及从动件走过的位移。2〕标出在D点接触凸轮时机构的压力角a。解:a)图:〔1〕作偏置圆〔2〕过D点作偏置圆切线,得出所在位置〔3〕作理论轮廓,作出两者交点〔4〕得s如图〔5〕b)图:〔1〕以A0为圆心,AA0为半径画圆弧;〔2〕以B1为圆心,AB为半径画圆弧;交A1点;〔3〕第五章齿轮机构5-11一渐开线在基圆半径的圆上发生。试求:渐开线上向径的点k的曲率半径、压力角和展角。解:①②③弧度5-12一正常齿制标准直齿圆柱齿轮,,,试分别求出分度圆、基圆、齿顶圆上渐开线齿廓的曲率半径和压力角。解:分度圆基圆处cos,齿顶圆处5-13一对外啮合正常齿制标准直齿圆柱齿轮,,,试计算这对齿轮的分度圆直径、齿顶高、齿根高、顶隙、中心距、齿顶圆直径、齿根圆直径、基圆直径、齿距、齿厚和齿槽宽。解:由,,5-14试比拟正常齿制渐开线标准直齿圆柱齿轮的基圆和齿根圆,在什么条件下基圆大于齿根圆?什么条件下基圆小于齿根圆?解:根据:〔2〕如果齿数小于等于41,基圆大于齿根圆如果齿数大于42,基圆小于齿根圆如果齿数小于等于44,基圆大于齿根圆如果齿数大于45,基圆小于齿根圆5-15现需要传动比的一对渐开线标准直齿圆柱齿轮传动,有三个压力角相等的渐开线标准直齿圆柱齿轮,它们的齿数分别为,,齿顶圆直径分别为,,,问哪两个齿轮能用?中心距等于多少?并用作图法求出它们的重合度。解:两个齿轮能用,是指能够正确啮合。根据所以:齿轮1和齿轮2两个齿轮能用.中心距重合度5-18对z1=24、z2=96、m=4mm、=20。、=1、c*=0.25的标准安装的渐开线外啮合标准直齿圆柱齿轮传动。因磨损严重,维修时拟利用大齿轮坯,将大齿轮加工成变位系数X2=-0.5的负变位齿轮。试求:1〕新配的小齿轮的变位系数X1。2〕大齿轮顶圆直径da2。5-20在图所示的同轴式渐开线圆柱齿轮减速器中,:z1=15、z2=53、z3=56、z4=14,两对齿轮传动的中心距a12’=a34’=70mm,各轮的m=2mm、=20。、=1、c*=0.25。〔1〕假设两对齿轮均采用直齿圆柱齿轮,试选择两对齿轮的传动类型,并分别求其啮合角。〔2〕假设轮1、2采用斜齿圆柱齿轮,轮3、4仍采用直齿圆柱齿轮,那么;①计算轮1、2的螺旋角的大小。②判断轮1是否根切。③轮3、4不发生根切的最小变位系数xmin。④设计计算轮3、4的分度圆、齿顶圆和齿根圆直径。解:〔1〕假设两对齿轮均采用直齿圆柱齿轮,两对齿轮的传动类型实际中心距:a=70mm理论中心距:a12=0.5×m(z1+z2)=0.5×2(15+53)=68mma34=0.5×m(z3+z4)=0.5×2(14+56)=70mm因为:a12﹤a,a=a34所以,齿轮1和2采用正传动,齿轮3和4采用零传动。啮合角cosα12’=a12×cosα/a12’=68×cos20°/70=0.91,所以,=24=α=20°〔2〕假设轮1、2采用斜齿圆柱齿轮,轮3、4仍采用直齿圆柱齿轮①计算轮1、2的螺旋角的大小a12=0.5×(d1+d2)=0.5×mn×(z1+z2)/cosβcosβ=0.5×mn×(z1+z2)/a12=68/70,所以,β=13.7°②判断轮1是否根切zmin=17cos3β=17×cos313.7°=15.58z1=15﹤zmin,所以,齿轮1发生根切。③轮3、4不发生根切的最小变位系数xmin④计算轮3、4的分度圆、齿顶圆和齿根圆直径计算轮3的分度圆、齿顶圆和齿根圆直径计算轮4的分度圆、齿顶圆和齿根圆直径5-21设一对斜齿轮转动,、、、、,,〔初选值〕,,试求〔应圆整〕,及,。解:5-22一平行轴斜齿轮机构。:z1=30、z2=100、mn=6mm。假设要求设计中心距为400mm,试确定该对斜齿轮的螺旋角。解:5-25有一阿基米德蜗杆传动,:传动比,蜗杆头数,直径系数,分度圆直径。试求:〔1〕模数、蜗杆分度圆柱导程角、蜗轮齿数及分度圆柱螺旋角;〔2〕蜗轮的分度圆直径和蜗杆传动中心距。解:第六章轮系及其设计6-11在图6-27所示的车床变速箱中,各轮齿数为z1=42,z2=58,z3’=38,z4’=42,z5’=50,z6’=48,电动机转速为1450r/min。假设移动三联滑移齿轮a使齿轮3’解:6-12图6-28所示为一电动卷扬机的传动简图。蜗杆1为单头右旋蜗杆,蜗轮2的齿数,其余各轮齿数为:,,,;卷筒5与齿轮4固联,其直径,电动机转速。试求:〔1〕卷筒5的转速的大小和重物的移动速度v;〔2〕提升重物时,电动机应该以什么方向旋转?图6-28题6-12图是定轴轮系,较简单。6-13在图示轮系中,各轮齿数为:,,,,,,。试求该轮系的传动比。图6-29题6-13图解:是两个周转轮系组成的复合轮系A.齿轮4、行星齿轮3、行星齿轮2,、齿轮5构成周转轮系H是行星架B.齿轮4、行星齿轮3、行星齿轮2,、行星齿轮2、齿轮1构成周转轮系H是行星架给系统加-,行星架固定。6-14在图示轮系中,各轮齿数为:,,,,,又,两者转向相反。试求齿轮4的转速的大小和方向。图6-30题6-14图解:是周转轮系.齿轮1、行星齿轮2、行星齿轮2,、齿轮4、齿轮3构成周转轮系,行星架H没有标出给系统加-,行星架固定。设:转向为正,6-15图示周转轮系,,,,,又,。试求行星架H的转速?图6-31题6-15图解:是周转轮系.齿轮1、行星齿轮2、行星齿轮2,、齿轮3构成周转轮系,行星架H。给系统加-,行星架固定。设:转向为正,6-19图示为一装配用电动螺丝刀齿轮减速局部的传动简图。各轮齿数为,。假设,试求螺丝刀的转速。图6-35题6-19图解:是两个周转轮系组成的复合轮系A.齿轮1、行星齿轮2、齿轮3构成周转轮系,H1是行星架。nH1=n4B.齿轮4、行星齿轮5、齿轮6构成周转轮系,H2是行星架nH2=n刀n3=n6=0根据装配条件,可以求出、6-22图6-38所示轮系中,,,,,,,假设,转向如下图,求的大小和方向。图6-38题6-22图解:是一个周转轮系和一个定轴轮系组成的复合轮系A.齿轮1、行星齿轮2、齿轮3构成周转轮系,齿轮3,是行星架H。nH=B.齿轮1,、齿轮2,、齿轮3,构成定轴轮系.〔a〕〔b〕nH=〔c〕n3=〔d〕联立上述四个方程,可以求出:第7章间歇运动机构和其它常用机构7-1什么是间歇运动?有哪些机构能实现间歇运动?[解]主动件的连续运动,而从动件作非连续运动。常见的棘轮机构、槽轮机构、不完全齿轮机构能实现间歇运动7-2常见的棘轮机构有哪几种?试述棘轮机构的工作特点。[解]常用类型:单动式、双动式;单向式、双向式;外啮合、内啮合;摩擦式等。如课本图7-1,当摆杆1顺时针方向摆动时,棘爪2将插入棘轮齿槽中,并带动棘轮顺时针方向转过一定的角度;当摆杆逆时针方向摆动时,棘爪在棘轮的齿背上滑过,这时棘轮不动。为防止棘轮倒转,机构中装有止回棘爪5,并用弹簧使止回爪与棘轮齿始终保持接触。这样,当白干1连续往复摆动时,就实现了棘轮的单向间歇运动。7-3槽轮机构有哪几种根本型式?槽轮机构的运动系数是如何定义的?[解]根本型式:外接式和内接式。在一个运动循环内,槽轮运动时间tb与拨盘运动时间tj之比值kt称为运动特性系数。7-5试述凸轮间歇运动机构的工作原理及运动特点。[解]工作原理:当凸轮转动时,通过其曲线沟槽〔或凸脊〕拨动从动盘上的圆柱销,使从动盘作间歇运动。特点:优点是结构简单、运转可靠、转位精确,无需专门的定位装置,易实现工作对动程和动停比的要求。通过适中选择从动件的运动规律和合理设计凸轮的轮廓曲线,可减小动载荷和防止冲击,以适应高速运转的要求。主要缺点是精确度要求较高,加工比拟复杂,安装调整比拟困难。7-6不完全齿轮机构与普通齿轮机构的啮合过程有何异同点?[解]在不完全齿轮机构中,主动轮1连续转动,当轮齿进入啮合时,从动轮2开始转动,当轮1上的轮耻退出啮合时,由于两轮的凸、凹锁止弧的定位作用,齿轮2可靠停歇,从而实现从动齿轮2的间歇转动。而普通齿轮啮合是连续的,从动轮的运动也是连续的。第八章机械运动动力学方程8-6在如图10-14所示汽轮机和螺旋浆的传动机构中,各构件的转动惯量分别为:汽轮机1的转子和与其相固联的轴2及其上齿轮的转动惯量J1=1900,螺旋桨5的转动惯量为J5=2500,轴3及其上齿轮的转动惯量=400,轴4及其上齿轮的转动惯量J3=1000,加在螺旋桨上的阻力矩为M5=30,传动比i23=6,i34=5。假设取汽轮机1为等效构件,试求整个机组的等效转动惯量和等效阻力矩。解:8-7如图为具有往复运动时杆的油泵机构运动简图。:lAB=50,移动导杆3的质量为m3=0.4kg(1);(2);(3)解:10-3图示为X6140铣床主传动系统简图.图中标出各轴号〔Ⅰ,Ⅱ,…,Ⅴ〕,轴Ⅴ为主轴.各轮齿数见图.各构件的转动惯量〔单位为〕为:电动机JM=0.0842;轴:JS1=0.0002,JS2=0.0018,JS3=0.0019,JS4=0.0070,JS5=0.0585;齿轮块:J3=0.0030,J4=0.0091,J7=0.0334,J8=0.0789;齿轮:J5=0.0053,J6=0.0087,J9=0.1789,J10=0.0056;飞轮JF=0.1112;带轮:J1=0.0004,J2=0.1508;制动器C:JC=0.0004,带的质量m=1.214kg.求图示传动路线以主轴Ⅴ为等效构件时的等效转动惯量.解:i12=ω1/ω2=D2/D1ω1=275×ω2/145……①i25=ω2/ω5=(-1)3×38×46×71/16×17×18ω2=-25.35×ω5将ω2代入①式可得:ω1=-48.1×ω5i35=ω3/ω5=(-1)2×46×71/17×18ω3=10.67×ω5i45=ω4/ω5=(-1)1×71/18ω4=-3.94×ω5皮带的速度:V=ω2×D2/2V=25.35×ω5×D2/2V/ω5=25.35×0.275/2=3.48由转动惯量的公式:JV5=∑ni=1[Jsi×(ωi/ω5)2+mi(Vsi/ω5)2]JV5=(JM+JS1+J1+JC)×(ω1/ω5)2+m×(V/ω5)2+(J2+JS2+J3)×(ω2/ω5)2+(J4+JS3+J5+J6)×(ω3/ω5)2+(J7+JS4+J8)×(ω4/ω5)2+(J9+JF+J10+JS5)×(ω5/ω5)2JV5=(0.0842+0.0002+0.0004+0.0004)×48.12+1.214×3.482+(0.1508+0.0018+0.0030)×25.352+(0.0091+0.0019+0.0053+0.0087)×10.672+(0.0334+0.0070+0.0789)×3.942+(0.1789+0.1112+0.0056+0.0585)×12JV5=316.86(kg·m2)10-5如下图为一简易机床的主传动系统,由一级皮带传动和两级合并轮传动组成。直流电动机的转速n0=1500,小皮带轮直径d=100,转动惯量Jd=0.1,大皮带轮直径D=200,转动惯量JD=0.3,各齿轮的齿数和转动惯量分别为:Z1=32,J1=0.1,Z2=56,J2=0.2,Z2’=32,J2’=0.1,J3=0.25要求在切断电源后2s,利用装在轴上的制动器将整个传动系统制动住。求所需的制动力矩。解:以主轴I为等效构件8-8在图所示定轴轮系中,各轮齿数为Z1=Z2’=20,Z3=Z4=40,各轮对其轮心的转动惯量分别为J1=J2’=0.01,J2=J3=0.04作用在轮1上的驱动力矩Md=30,作用在轮3上的阻力矩Mr=120。设该轮系原来静止,试求在Md和Mr作用下,运转到t=1.5s时,轮1的角速度和角加速度。解:取轮1为等效构件i12=ω1/ω2=(-1)1×z2/z1ω2=-ω1/2i13=ω1/ω3=(-1)2×z2×z3/z1×z2’ω3=20×20×ω1/40×40=ω1/4轮1的等效力矩M为:M=Md×ω1/ω1+Mr×ω3/ω1=60×1-120/4=30N·m轮1的等效转动惯量J为:J=J1(ω1/ω1)2+(J2’+J2)(ω2/ω1)2+J3(ω3/ω1)2=0.01×1+(0.01+0.04)/4+0.04/16=0.025(kg·m2)∵M=J×ε∴角加速度ε=M/J=1200(rad/s2)初始角速度ω0=0∴ω1=ω0+ε×tω1=1200×1.5=1800(rad/s)8-10一机械系统的等效力矩Me对转角的变化曲线如下图。各块面积分别为,f1=340mm2,f2=810mm2,f3=600mm2,f4=910mm2f5=555mm2f6=470mm2f7=695mm2比例尺:平均转速n解:根据能量指示图:8-11在如图8-16所示的传动机构中,1轮为主动轮。其上作用的主动力矩为常数。2轮上作用有主力矩,其值随2轮的转角作周期性变化:当2轮由0度转到120度时,其变化关系如图8-16(b)所示。当
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 滨州医学院《新媒体综合运营》2023-2024学年第一学期期末试卷
- 滨州学院《融媒体创意坊》2023-2024学年第一学期期末试卷
- 毕节幼儿师范高等专科学校《综合英语:生工食品药学1》2023-2024学年第一学期期末试卷
- 北京中医药大学东方学院《中学生物教材分析》2023-2024学年第一学期期末试卷
- 个人房屋租赁合同精简版
- 视频监控合同书
- 二零二五年光伏发电合同能源管理合作协议2篇
- 2024至2030年伸缩型画架项目投资价值分析报告
- 电动车租赁合同
- 资方项目居间协议居间合同标准版
- 眼视光学理论和方法知到智慧树章节测试课后答案2024年秋山东中医药大学
- 叉车维护维修合同
- 2024年财务部年度工作总结(7篇)
- 2024年度医疗美容服务合作合同3篇
- 水利工程劳务施工方案
- 山东省德州市2023-2024学年高二上学期期末考试政治试题 附答案
- 期末复习试题(试题)-2024-2025学年五年级上册数学苏教版
- 高中体育教学教案30篇
- 2025年低压电工作业模拟考试题库
- 七年级上册语文常考必背重点知识梳理(pdf版)
- 银行先进个人先进事迹材料
评论
0/150
提交评论