2023-2024学年湖南省湖湘教育三新探索协作体高考冲刺押题(最后一卷)数学试卷含解析_第1页
2023-2024学年湖南省湖湘教育三新探索协作体高考冲刺押题(最后一卷)数学试卷含解析_第2页
2023-2024学年湖南省湖湘教育三新探索协作体高考冲刺押题(最后一卷)数学试卷含解析_第3页
2023-2024学年湖南省湖湘教育三新探索协作体高考冲刺押题(最后一卷)数学试卷含解析_第4页
2023-2024学年湖南省湖湘教育三新探索协作体高考冲刺押题(最后一卷)数学试卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年湖南省湖湘教育三新探索协作体高考冲刺押题(最后一卷)数学试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知三棱锥的所有顶点都在球的球面上,平面,,若球的表面积为,则三棱锥的体积的最大值为()A. B. C. D.2.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.已知集合,,则集合的真子集的个数是()A.8 B.7 C.4 D.34.已知全集,集合,则=()A. B.C. D.5.“”是“”的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件6.已知函数,若,使得,则实数的取值范围是()A. B.C. D.7.中国古代用算筹来进行记数,算筹的摆放形式有纵横两种形式(如图所示),表示一个多位数时,像阿拉伯记数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,其中个位、百位、方位……用纵式表示,十位、千位、十万位……用横式表示,则56846可用算筹表示为()A. B. C. D.8.如图,已知平面,,、是直线上的两点,、是平面内的两点,且,,,,.是平面上的一动点,且直线,与平面所成角相等,则二面角的余弦值的最小值是()A. B. C. D.9.已知平面向量,满足,且,则与的夹角为()A. B. C. D.10.已知数列的首项,且,其中,,,下列叙述正确的是()A.若是等差数列,则一定有 B.若是等比数列,则一定有C.若不是等差数列,则一定有 D.若不是等比数列,则一定有11.某高中高三(1)班为了冲刺高考,营造良好的学习氛围,向班内同学征集书法作品贴在班内墙壁上,小王,小董,小李各写了一幅书法作品,分别是:“入班即静”,“天道酬勤”,“细节决定成败”,为了弄清“天道酬勤”这一作品是谁写的,班主任对三人进行了问话,得到回复如下:小王说:“入班即静”是我写的;小董说:“天道酬勤”不是小王写的,就是我写的;小李说:“细节决定成败”不是我写的.若三人的说法有且仅有一人是正确的,则“入班即静”的书写者是()A.小王或小李 B.小王 C.小董 D.小李12.双曲线的左右焦点为,一条渐近线方程为,过点且与垂直的直线分别交双曲线的左支及右支于,满足,则该双曲线的离心率为()A. B.3 C. D.2二、填空题:本题共4小题,每小题5分,共20分。13.执行以下语句后,打印纸上打印出的结果应是:_____.14.已知△ABC得三边长成公比为2的等比数列,则其最大角的余弦值为_____.15.已知为矩形的对角线的交点,现从这5个点中任选3个点,则这3个点不共线的概率为________.16.已知i为虚数单位,复数,则=_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数()的最小值为.(1)求的值;(2)若,,为正实数,且,证明:.18.(12分)已知抛物线的焦点为,准线与轴交于点,点在抛物线上,直线与抛物线交于另一点.(1)设直线,的斜率分别为,,求证:常数;(2)①设的内切圆圆心为的半径为,试用表示点的横坐标;②当的内切圆的面积为时,求直线的方程.19.(12分)设函数.(1)求不等式的解集;(2)若的最小值为,且,求的最小值.20.(12分)在平面直角坐标系中,曲线的参数方程是(为参数),以原点为极点,轴正半轴为极轴,建立极坐标系,直线的极坐标方程为.(Ⅰ)求曲线的普通方程与直线的直角坐标方程;(Ⅱ)已知直线与曲线交于,两点,与轴交于点,求.21.(12分)已知函数.(1)求不等式的解集;(2)若不等式在上恒成立,求实数的取值范围.22.(10分)如图所示,在四棱锥中,底面是边长为2的正方形,侧面为正三角形,且面面,分别为棱的中点.(1)求证:平面;(2)(文科)求三棱锥的体积;(理科)求二面角的正切值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

由题意画出图形,设球0得半径为R,AB=x,AC=y,由球0的表面积为20π,可得R2=5,再求出三角形ABC外接圆的半径,利用余弦定理及基本不等式求xy的最大值,代入棱锥体积公式得答案.【详解】设球的半径为,,,由,得.如图:设三角形的外心为,连接,,,可得,则.在中,由正弦定理可得:,即,由余弦定理可得,,.则三棱锥的体积的最大值为.故选:.【点睛】本题考查三棱锥的外接球、三棱锥的侧面积、体积,基本不等式等基础知识,考查空间想象能力、逻辑思维能力、运算求解能力,考查数学转化思想方法与数形结合的解题思想方法,是中档题.2、B【解析】

或,从而明确充分性与必要性.【详解】,由可得:或,即能推出,但推不出∴“”是“”的必要不充分条件故选【点睛】本题考查充分性与必要性,简单三角方程的解法,属于基础题.3、D【解析】

转化条件得,利用元素个数为n的集合真子集个数为个即可得解.【详解】由题意得,,集合的真子集的个数为个.故选:D.【点睛】本题考查了集合的化简和运算,考查了集合真子集个数问题,属于基础题.4、D【解析】

先计算集合,再计算,最后计算.【详解】解:,,.故选:.【点睛】本题主要考查了集合的交,补混合运算,注意分清集合间的关系,属于基础题.5、A【解析】

首先利用二倍角正切公式由,求出,再根据充分条件、必要条件的定义判断即可;【详解】解:∵,∴可解得或,∴“”是“”的充分不必要条件.故选:A【点睛】本题主要考查充分条件和必要条件的判断,二倍角正切公式的应用是解决本题的关键,属于基础题.6、C【解析】试题分析:由题意知,当时,由,当且仅当时,即等号是成立,所以函数的最小值为,当时,为单调递增函数,所以,又因为,使得,即在的最小值不小于在上的最小值,即,解得,故选C.考点:函数的综合问题.【方法点晴】本题主要考查了函数的综合问题,其中解答中涉及到基本不等式求最值、函数的单调性及其应用、全称命题与存在命题的应用等知识点的综合考查,试题思维量大,属于中档试题,着重考查了学生分析问题和解答问题的能力,以及转化与化归思想的应用,其中解答中转化为在的最小值不小于在上的最小值是解答的关键.7、B【解析】

根据题意表示出各位上的数字所对应的算筹即可得答案.【详解】解:根据题意可得,各个数码的筹式需要纵横相间,个位,百位,万位用纵式表示;十位,千位,十万位用横式表示,用算筹表示应为:纵5横6纵8横4纵6,从题目中所给出的信息找出对应算筹表示为中的.故选:.【点睛】本题主要考查学生的合情推理与演绎推理,属于基础题.8、B【解析】

为所求的二面角的平面角,由得出,求出在内的轨迹,根据轨迹的特点求出的最大值对应的余弦值【详解】,,,,同理为直线与平面所成的角,为直线与平面所成的角,又,在平面内,以为轴,以的中垂线为轴建立平面直角坐标系则,设,整理可得:在内的轨迹为为圆心,以为半径的上半圆平面平面,,为二面角的平面角,当与圆相切时,最大,取得最小值此时故选【点睛】本题主要考查了二面角的平面角及其求法,方法有:定义法、三垂线定理及其逆定理、找公垂面法、射影公式、向量法等,依据题目选择方法求出结果.9、C【解析】

根据,两边平方,化简得,再利用数量积定义得到求解.【详解】因为平面向量,满足,且,所以,所以,所以,所以,所以与的夹角为.故选:C【点睛】本题主要考查平面向量的模,向量的夹角和数量积运算,属于基础题.10、C【解析】

根据等差数列和等比数列的定义进行判断即可.【详解】A:当时,,显然符合是等差数列,但是此时不成立,故本说法不正确;B:当时,,显然符合是等比数列,但是此时不成立,故本说法不正确;C:当时,因此有常数,因此是等差数列,因此当不是等差数列时,一定有,故本说法正确;D:当时,若时,显然数列是等比数列,故本说法不正确.故选:C【点睛】本题考查了等差数列和等比数列的定义,考查了推理论证能力,属于基础题.11、D【解析】

根据题意,分别假设一个正确,推理出与假设不矛盾,即可得出结论.【详解】解:由题意知,若只有小王的说法正确,则小王对应“入班即静”,而否定小董说法后得出:小王对应“天道酬勤”,则矛盾;若只有小董的说法正确,则小董对应“天道酬勤”,否定小李的说法后得出:小李对应“细节决定成败”,所以剩下小王对应“入班即静”,但与小王的错误的说法矛盾;若小李的说法正确,则“细节决定成败”不是小李的,则否定小董的说法得出:小王对应“天道酬勤”,所以得出“细节决定成败”是小董的,剩下“入班即静”是小李的,符合题意.所以“入班即静”的书写者是:小李.故选:D.【点睛】本题考查推理证明的实际应用.12、A【解析】

设,直线的方程为,联立方程得到,,根据向量关系化简到,得到离心率.【详解】设,直线的方程为.联立整理得,则.因为,所以为线段的中点,所以,,整理得,故该双曲线的离心率.故选:.【点睛】本题考查了双曲线的离心率,意在考查学生的计算能力和转化能力.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】

根据程序框图直接计算得到答案.【详解】程序在运行过程中各变量的取值如下所示:是否继续循环ix循环前14第一圈是44+2第二圈是74+2+8第三圈是104+2+8+14退出循环,所以打印纸上打印出的结果应是:1故答案为:1.【点睛】本题考查了程序框图,意在考查学生的计算能力和理解能力.14、-【解析】试题分析:根据题意设三角形的三边长分别设为为a,2a,2a,∵2a>2a>a,∴2a所对的角为最大角,设为θ,则根据余弦定理得考点:余弦定理及等比数列的定义.15、【解析】

基本事件总数,这3个点共线的情况有两种和,由此能求出这3个点不共线的概率.【详解】解:为矩形的对角线的交点,现从,,,,这5个点中任选3个点,基本事件总数,这3个点共线的情况有两种和,这3个点不共线的概率为.故答案为:.【点睛】本题考查概率的求法,考查对立事件概率计算公式等基础知识,考查运算求解能力,属于基础题.16、【解析】

先把复数进行化简,然后利用求模公式可得结果.【详解】.故答案为:.【点睛】本题主要考查复数模的求解,利用复数的运算把复数化为的形式是求解的关键,侧重考查数学运算的核心素养.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析【解析】

(1)分类讨论,去绝对值求出函数的解析式,根据一次函数的性质,得出的单调性,得出取最小值,即可求的值;(2)由(1)得出,利用“乘1法”,令,化简后利用基本不等式求出的最小值,即可证出.【详解】(1)解:当时,单调递减;当时,单调递增.所以当时,取最小值.(2)证明:由(1)可知.要证明:,即证,因为,,为正实数,所以.当且仅当,即,,时取等号,所以.【点睛】本题考查绝对值不等式和基本不等式的应用,还运用“乘1法”和分类讨论思想,属于中档题.18、(1)证明见解析;(2)①;②.【解析】

(1)设过的直线交抛物线于,,联立,利用直线的斜率公式和韦达定理表示出,化简即可;(2)由(1)知点在轴上,故,设出直线方程,求出交点坐标,因为内心到三角形各边的距离相等且均为内切圆半径,列出方程组求解即可.【详解】(1)设过的直线交抛物线于,,联立方程组,得:.于是,有:,又,;(2)①由(1)知点在轴上,故,联立的直线方程:.,又点在抛物线上,得,又,;②由题得,(解法一)所以直线的方程为(解法二)设内切圆半径为,则.设直线的斜率为,则:直线的方程为:代入直线的直线方程,可得于是有:得,又由(1)可设内切圆的圆心为则,即:,解得:所以,直线的方程为:.【点睛】本题主要考查了抛物线的性质,直线与抛物线相关的综合问题的求解,考查了学生的运算求解与逻辑推理能力.19、(1)或(2)最小值为.【解析】

(1)讨论,,三种情况,分别计算得到答案.(2)计算得到,再利用均值不等式计算得到答案.【详解】(1)当时,由,解得;当时,由,解得;当时,由,解得.所以所求不等式的解集为或.(2)根据函数图像知:当时,,所以.因为,由,可知,所以,当且仅当,,时,等号成立.所以的最小值为.【点睛】本题考查了解绝对值不等式,函数最值,均值不等式,意在考查学生对于不等式,函数知识的综合应用.20、(1)(x-1)2+y2=4,直线l的直角坐标方程为x-y-2=0;(2)3.【解析】

(1)消参得到曲线的普通方程,利用极坐标和直角坐标方程的互化公式求得直线的直角坐标方程;(2)先得到直线的参数方程,将直线的参数方程代入到圆的方程,得到关于的一元二次方程,由根与系数的关系、参数的几何意义进行求解.【详解】(1)由曲线C的参数方程(α为参数)(α为参数),两式平方相加,得曲线C的普通方程为(x-1)2+y2=4;由直线l的极坐标方程可得ρcosθcos-ρsinθsin=ρcosθ-ρsinθ=2,即直线l的直角坐标方程为x-y-2=0.(2)由题意可得P(2,0),则直线l的参数方程为(t为参数).设A,B两点对应的参数分别为t1,t2,则|PA|·|PB|=|t1|·|t2|,将(t为参数)代入(x-1)2+y2=4,得t2+t-3=0,则Δ>0,由韦达定理可得t1·t2=-3,所以|PA|·|PB|=|-3|=3.21、(1);(2)【解析】

(1)分类讨论去绝对值号,即可求解;(2)原不等式可转化为在R上恒成立,分别求函数与的最小值,根据能同时成立,可得的最小值,即可求解.【详解】(1)①当时,不等式可化为,得,无解;②当-2≤x≤1时,不等式可化为得x>0,故0<x≤1;③当x>1时,不等式可化为,得x<2,故1<x<2.综上,不等式的解集为(2)由题意知在R上恒成立,所以令,则当时,又当时,取得最小值,且又所以当时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论