2024年江苏省扬州市江都实验中学八年级数学第二学期期末达标检测模拟试题含解析_第1页
2024年江苏省扬州市江都实验中学八年级数学第二学期期末达标检测模拟试题含解析_第2页
2024年江苏省扬州市江都实验中学八年级数学第二学期期末达标检测模拟试题含解析_第3页
2024年江苏省扬州市江都实验中学八年级数学第二学期期末达标检测模拟试题含解析_第4页
2024年江苏省扬州市江都实验中学八年级数学第二学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年江苏省扬州市江都实验中学八年级数学第二学期期末达标检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.若分式方程有增根,则m等于()A.-3 B.-2 C.3 D.22.欧几里得是古希腊数学家,所著的《几何原本》闻名于世.在《几何原本》中,形如x2+ax=b2的方程的图解法是:如图,以和b为直角边作Rt△ABC,再在斜边上截取BD=,则图中哪条线段的长是方程x2+ax=b2的解?答:是(

)A.AC B.AD C.AB D.BC3.方程x(x-2)=0的根是()A.x=0 B.x=2 C.x1=0,x2=2 D.x1=0,x2=-24.如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm至D点,则橡皮筋被拉长了()A.2cm B.3cm C.4cm D.5cm5.当k<0时,一次函数y=kx﹣k的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.如图所示,在中,,则为()A. B. C. D.7.下列关于x的分式方程中,有解的是()A. B.C. D.8.若分式x2-1x2+x-2的值为零,则A.x=1 B.x=±1 C.x=-1 D.x≠19.如图,将边长为的正方形ABCD绕点A逆时针方向旋转后得到正方形,则图中阴影部分的面积为A. B. C. D.10.下列多项式中,可以提取公因式的是()A.ab+cd B.mn+m2C.x2-y2 D.x2+2xy+y2二、填空题(每小题3分,共24分)11.已知反比例函数的图象与一次函数y=k(x﹣3)+2(k>0)的图象在第一象限交于点P,则点P的横坐标a的取值范围为___.12.小数0.00002l用科学记数法表示为_____.13.已知正比例函数y=(k+5)x,且y随x的增大而减小,则k的取值范围是____.14.已知一个多边形中,除去一个内角外,其余内角的和为,则除去的那个内角的度数是______.15.在平面直角坐标系中,△ABC上有一点P(0,2),将△ABC向左平移2个单位长度,再向上平移3个单位长度,得到的新三角形上与点P相对应的点的坐标是_____.16.将点A(2,1)向左平移2个单位长度得到点A′,则点A′的坐标是.17.若式子有意义,则x的取值范围为___________.18.化简=_____.三、解答题(共66分)19.(10分)如图,已知□ABCD中,点E、F分别在AD、BC上,且EF垂直平分对角线AC,垂足为O,求证:四边形AECF是菱形。20.(6分)一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1千米,出租车离甲地的距离为y2千米,两车行驶的时间为x小时,y1、y2关于x的函数图像如下图所示:(1)根据图像,直接写出y1、y2关于x的函数关系式;(2)若两车之间的距离为S千米,请写出S关于x的函数关系式;(3)甲、乙两地间有A、B两个加油站,相距200千米,若客车进入A加油站时,出租车恰好进入B加油站,求A加油站离甲地的距离.21.(6分)如图1,在直角梯形ABCD中,动点P从B点出发,沿B→C→D→A匀速运动,设点P运动的路程为x,△ABP的面积为y,图象如图2所示.(1)在这个变化中,自变量、因变量分别是、;(2)当点P运动的路程x=4时,△ABP的面积为y=;(3)求AB的长和梯形ABCD的面积.22.(8分)已知y与x+2成正比例,当x=4时,y=12.(1)写出y与x之间的函数解析式;(2)求当y=36时x的值;(3)判断点(-7,-10)是否是函数图象上的点.23.(8分)如图,在平面直角坐标系xOy中,一次函数的图象与正比例函数的图象交于点A(2,m),一次函数的图象分别与x轴、y轴交于B、C两点.(1)求m、k的值;(2)求∠ACO的度数和线段AB的长.24.(8分)已知关于x的一次函数y=(3-m)x+m-5的图象经过第二、三、四象限,求实数m的取值范围.25.(10分)甲、乙两辆汽车沿同一路线赶赴距出发地480千米的目的地,乙车比甲车晚出发2小时(从甲车出发时开始计时),图中折线OABC、线段DE分别表示甲、乙两车所行路程y(千米)与时间x(小时)之间的函数关系对应的图像线段AB表示甲出发不足2小时因故停车检修),请根据图像所提供的信息,解决如下问题:(1)求乙车所行路程y与时间x的函数关系式;(2)求两车在途中第二次相遇时,它们距出发地的路程;(3)乙车出发多长时间,两车在途中第一次相遇?(写出解题过程)26.(10分)如图,矩形ABCD的边BC在x轴上,点A(a,4)和D分别在反比函数y=-12x和y=mx(m>(1)当AB=BC时,求m的值。(2)连结OA,OD.当OD平方∠AOC时,求△AOD的周长.

参考答案一、选择题(每小题3分,共30分)1、B【解析】

先去掉分母,再将增根x=1代入即可求出m的值.【详解】解,去分母得x-3=m把增根x=1代入得m=1-3=-2故选B.【点睛】此题主要考查分式方程的求解,解题的关键是熟知增根的含义.2、B【解析】

解一元二次方程,由求根公式求得,已知AC、BC,由勾股定理求得AB,则AD等于AB和BD之差,比较AD的长度和x的解即可知结论.【详解】x2+ax=b2,即x2+ax-b2=0,∴∵∠ACB=90°,∴AB=,则故答案为:B.【点睛】本题主要考查一元二次方程的根,与勾股定理,解题关键在于能够求出AB的长度.3、C【解析】试题分析:∵x(x-1)=0∴x=0或x-1=0,解得:x1=0,x1=1.故选C.考点:解一元二次方程-因式分解法.4、A【解析】

根据勾股定理可以得到AD和BD的长度,然后用AD+BD-AB的长度即为所求.【详解】根据题意可得BC=4cm,CD=3cm,根据Rt△BCD的勾股定理可得BD=5cm,则AD=BD=5cm,所以橡皮筋被拉长了(5+5)-8=2cm.【点睛】主要考查了勾股定理解直角三角形.5、C【解析】试题分析:∵k<0,∴﹣k>0,∴一次函数y=kx﹣k的图象经过第一、二、四象限.故选C.考点:一次函数图象与系数的关系.6、D【解析】

根据直角三角形的两个锐角互余的性质解答.【详解】解:在△ABC中,∠C=90°,则x+2x=90°.解得:x=30°.所以2x=60°,即∠B为60°.故选:D.【点睛】本题考查了直角三角形的性质,直角三角形的两个锐角互余,由此借助于方程求得答案.7、B【解析】

根据分子为0,分母不为0,存在同时满足两个条件时的x,则分式方程有解..【详解】A.当,则且,当时,,当时,,所以该方程无解;B.当,则且,当时,当时,所以该方程的解为;C.因为无解,所以该方程无解;D.当,则且,当时,当时,所以该方程无解.故选B.【点睛】本题考查解分式方程,分式的值要为0,则分子要为0同时分母不能为0.8、C【解析】

直接利用分式的值为零则分子为零,分母不为零,进而得出答案.【详解】解:∵分式x2∴x2−1=0且x2+x−2≠0,解得:x=−1.故选:C.【点睛】此题主要考查了分式的值为零的条件,正确解方程是解题关键.9、D【解析】

设BC、C'D'相交于点M,连结AM,根据HL即可证明△AD'M≌△ABM,可得到∠MAB=30°,然后可求得MB的长,从而可求得△ABM的面积,最后利用正方形的面积减去△AD'M和△ABM的面积进行计算即可.【详解】设BC、相交于点M,连结AM,由旋转的性质可知:,在Rt和Rt△ABM中,≌(HL),,,,,又,,,又,,故选D.【点睛】本题考查旋转的性质以及全等三角形的判定与性质、特殊锐角三角函数值的应用,熟练掌握相关性质与定理、证得≌是解本题的关键.10、B【解析】

直接利用提取公因式法分解因式的步骤分析得出答案.【详解】解:A.ab+cd,没有公因式,故此选项错误;B.mn+m2=m(n+m),故此选项正确;C.x2﹣y2,没有公因式,故此选项错误;D.x2+2xy+y2,没有公因式,故此选项错误.故选B.【点睛】本题主要考查了提取公因式法分解因式,正确找出公因式是解题的关键.二、填空题(每小题3分,共24分)11、2<a<1.【解析】

先确定一次函数图象必过点(1,2),根据k>0得出直线必过一、三象限,继而结合图象利用数形结合思想即可得出答案.【详解】当x=1时,y=k(1﹣1)+2=2,即一次函数过点(1,2),∵k>0,∴一次函数的图象必过一、三象限,把y=2代入y=,得x=2,观察图象可知一次函数的图象和反比例函数y=图象的交点的横坐标大于2且小于1,∴2<a<1,故答案为:2<a<1.【点睛】本题考查了反比例函数与一次函数的交点问题,熟练掌握相关知识并正确运用数形结合思想是解题的关键.12、2.1×10﹣1【解析】

绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:小数0.00002l用科学记数法表示为2.1×10-1.

故答案为2.1×10-1.【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.13、k<-5【解析】

根据当k<0时,y随x的增大而减小解答即可.【详解】由题意得k+5<0,∴k<-5.故答案为:k<-5.【点睛】本题考查了正比例函数图象与系数的关系:对于y=kx(k为常数,k≠0),当k>0时,y=kx的图象经过一、三象限,y随x的增大而增大;当k<0时,y=kx的图象经过二、四象限,y随x的增大而减小.14、【解析】

由于多边形内角和=,即多边形内角和是180°的整数倍,因此先用减去后的内角和除以180°,得到余数为80°,因此减去的角=180°-80°=100°.【详解】∵1160°÷180°=6…80°,又∵100°+80°=180°,∴这个内角度数为100°,故答案为:100°.【点睛】本题主要考查多边形内角和,解决本题的关键是要熟练掌握多边形内角和的相关计算.15、(﹣2,5)【解析】

平移的规律:平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【详解】解:由点的平移规律可知,此题规律是:向左平移2个单位再向上平移3个单位,照此规律计算可知得到的新三角形上与点P相对应的点的坐标是(0﹣2,2+3),即(﹣2,5).故答案为(﹣2,5).【点睛】本题考查图形的平移变换.在平面直角坐标系中,图形的平移与图形上某点的平移相同.16、(0,1).【解析】本题是考查的是平面坐标系中点的平移.注意上加下减,左减右加.点A(2,1)向右平移2个单位长度所以横坐标加2,得2+2=4,故点A′的坐标是(4,1).17、x≥5【解析】

根据二次根式的性质,即可求解.【详解】因为式子有意义,可得:x-5≥1,解得:x≥5,故选A.【点睛】主要考查了二次根式的意义.二次根式中的被开方数必须是非负数,否则二次根式无意义.当二次根式在分母上时还要考虑分母不等于零,此时被开方数大于1.18、【解析】

,故答案为考点:分母有理化三、解答题(共66分)19、证明见解析【解析】试题分析:先根据垂直平分线的性质得所以∠1=∠2,∠3=∠4;再结合平行线的性质得出∠1=∠4=∠3,即利用四条边相等的四边形是菱形即可证明试题解析:∵EF垂直平分AC,∴AO=OC,AE=CE,AF=CF,∴∠1=∠2,∠3=∠4,又∵四边形ABCD是平行四边形,∴AD∥BC,∴∠1=∠4=∠3,∴AF=AE,∴AE=EC=CF=FA,∴四边形AECF是菱形.点睛:菱形的判定:四条边相等的四边形是菱形.20、(1)(0≤x≤10);(0≤x≤6)(2)(3)A加油站到甲地距离为150km或300km【解析】

(1)直接运用待定系数法就可以求出y1、y2关于x的函数图关系式;(2)分别根据当0≤x<时,当≤x<6时,当6≤x≤10时,求出即可;(3)分A加油站在甲地与B加油站之间,B加油站在甲地与A加油站之间两种情况列出方程求解即可.【详解】(1)设y1=k1x,由图可知,函数图象经过点(10,600),∴10k1=600,解得:k1=60,∴y1=60x(0≤x≤10),设y2=k2x+b,由图可知,函数图象经过点(0,600),(6,0),则,解得:∴y2=-100x+600(0≤x≤6);(2)由题意,得60x=-100x+600x=,当0≤x<时,S=y2-y1=-160x+600;当≤x<6时,S=y1-y2=160x-600;当6≤x≤10时,S=60x;即;(3)由题意,得①当A加油站在甲地与B加油站之间时,(-100x+600)-60x=200,解得x=,此时,A加油站距离甲地:60×=150km,②当B加油站在甲地与A加油站之间时,60x-(-100x+600)=200,解得x=5,此时,A加油站距离甲地:60×5=300km,综上所述,A加油站到甲地距离为150km或300km.21、(1)x,y;(2)2;(3)AB=8,梯形ABCD的面积=1.【解析】

(1)依据点P运动的路程为x,△ABP的面积为y,即可得到自变量和因变量;(2)依据函数图象,即可得到点P运动的路程x=4时,△ABP的面积;(3)根据图象得出BC的长,以及此时三角形ABP面积,利用三角形面积公式求出AB的长即可;由函数图象得出DC的长,利用梯形面积公式求出梯形ABCD面积即可.【详解】(1)∵点P运动的路程为x,△ABP的面积为y,∴自变量为x,因变量为y.故答案为x,y;(2)由图可得:当点P运动的路程x=4时,△ABP的面积为y=2.故答案为2;(3)根据图象得:BC=4,此时△ABP为2,∴AB•BC=2,即×AB×4=2,解得:AB=8;由图象得:DC=9﹣4=5,则S梯形ABCD=×BC×(DC+AB)=×4×(5+8)=1.【点睛】本题考查了动点问题的函数图象,弄清函数图象上的信息是解答本题的关键.22、(1)y=2(x+2)=2x+4;(2)x=16;(3)点(-7,-10)是函数图象上的点.【解析】(1)利用待定系数法即可求出答案;(2)把y=36代入(1)中所求的函数解析式中即可得出x的值;(3)把x=-7代入(1)中所求的函数解析式中即可判断出答案.解:(1)设y=k(x+2).∵x=4,y=12,∴6k=12.解得k=2.∴y=2(x+2)=2x+4.(2)当y=36时,2x+4=36,解得x=16.(3)当x=-7时,y=2×(-7)+4=-10,∴点(-7,-10)是函数图象上的点.23、(1)m=4,k=2;(2)∠ACO=45°,AB.【解析】

(1)将点A(2,m)代入y=-x+6可得m的值,再将所得点A坐标代入y=kx可得k;

(2)先求得点B、C的坐标,从而得出△OBC是等腰直角三角形,据此知∠ACO=45°,根据勾股定理可得AB的长.【详解】解:(1)把A(2,m)代入y=-x+6得:m=-2+6=4,

把A(2,4)代入y=kx得4=2k,解得k=2;

(2)由y=-x+6可得B(6,0)、C(0,6),

∴OB=OC=6,

∴△OBC是等腰直角三角形,

∴∠ACO=45°.

设AD⊥x轴于点D,AE⊥y轴于点E,

则AD=4,BD=OB-OD=6-2=4,

在Rt△ABD中,AB=.【点睛】本题主要考查了待定系数法求函数解析式,等腰三角形的判定与性质、勾股定理等知识,掌握基本定理是解题的关键.24、3<m<1.【解析】

根据一次函数的性质即可求出m的取值范围.【详解】∵一次函数的图象经过第二、三、四象限,∴,∴3<m<1.【点睛】本题考查一次函数,解题的关键是熟练运用一次函数的性质,本题属于基础题型.25、(1)y=1x﹣120;(2)两车在途中第二次相遇时它们距出发地的路程为240千米;(3)乙车出发1小时,两车在途中第一次相遇.【解析】分析:(1)由图可看出,乙车所行路程y与时间x的成一次函数,使用待定系数法可求得一次函数关系式;(2)由图可得:交点F表示第二次相遇,F点横坐标为6,代入(1)中的函数即可求得距出发地的路程;(3)交点P表示第一次相遇,即甲车故障停车检修时相遇,点P的横坐标表示时间,纵坐标表示离出发地的距离,要求时间,则需要把点P的纵坐标先求出;从图中看出,点P的纵坐标与点B的纵坐标相等,而点B在线段BC上,BC对应的函数关系可通过待定系数法求解,点B的横坐标已知,则纵坐标可求.详解:(1)设乙车所行使路程y与时间x的函数关系式为y=k1x+b1,把(2,0)和(10,480)代入,得:,解得:,故y与x的函数关系式为y=1x﹣120;(2)由图可得:交点F表示第二次相遇,F点的横坐标为6,此时y=1×6=120=240,则F点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论