安徽省宿州市鹏程中学2024年数学八年级下册期末达标检测模拟试题含解析_第1页
安徽省宿州市鹏程中学2024年数学八年级下册期末达标检测模拟试题含解析_第2页
安徽省宿州市鹏程中学2024年数学八年级下册期末达标检测模拟试题含解析_第3页
安徽省宿州市鹏程中学2024年数学八年级下册期末达标检测模拟试题含解析_第4页
安徽省宿州市鹏程中学2024年数学八年级下册期末达标检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省宿州市鹏程中学2024年数学八年级下册期末达标检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列四个数中,大于而又小于的无理数是A. B. C. D.2.给出下列命题:(1)平行四边形的对角线互相平分;(2)矩形的对角线相等;(3)菱形的对角线互相垂直平分;(4)正方形的对角线相等且互相垂直平分.其中,真命题的个数是()A.2 B.3 C.4 D.13.用配方法解一元二次方程时,此方程可变形为()A. B. C. D.4.若一个多边形的内角和等于外角和的2倍,则这个多边形的边数为()A.8 B.6 C.5 D.45.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是()A.甲和乙 B.乙和丙 C.甲和丙 D.只有丙6.如图,在同一直角坐标系中,函数和的图象相交于点A,则不等式的解集是A. B. C. D.7.小华所在的九年级一班共有50名学生,一次体检测量了全班学生的身高,由此求得该班学生的平均身高是1.65米,而小华的身高是1.66米,下列说法错误的是()A.1.65米是该班学生身高的平均水平B.班上比小华高的学生人数不会超过25人C.这组身高数据的中位数不一定是1.65米D.这组身高数据的众数不一定是1.65米8.如图,四边形ABCD是正方形,延长BA到点E,使BE=BD,则∠ADE等于(

)A.15.5°

B.22.5°

C.45°

D.67.5°9.下列运算正确的是()A.-= B.=2 C.-= D.=2-10.如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),则关于不等式x+1≥mx+n的解集是()A.x≥m B.x≥2 C.x≥1 D.x≥﹣111.如图,,,垂足分别是,,且,若利用“”证明,则需添加的条件是()A. B.C. D.12.菱形具有而一般平行四边形不具有的性质是()A.两组对边分别相等 B.两条对角线相等C.四个内角都是直角 D.每一条对角线平分一组对角二、填空题(每题4分,共24分)13.如图,在菱形中,对角线交于点,过点作于点,已知BO=4,S菱形ABCD=24,则___.14.对于任意不相等的两个正实数a,b,定义运算如下:如,如,那么________.15.计算−的结果为______16.如图是一块地的平面示意图,已知AD=4m,CD=3m,AB=13m,BC=12m,∠ADC=90°,则这块地的面积为_____m2.17.若关于的一元二次方程有两个相等的实数根,则的值是__________.18.某种手机每部售价为元,如果每月售价的平均降低率为,那么两个月后,这种手机每部的售价是____________元.(用含,的代数式表示)三、解答题(共78分)19.(8分)由中宣部建设的“学习强国”学习平台正式上线,这是推动新时代中国特色社会主义思想,推进马克思主义学习型政党和学习型社会建设的创新举措.某校党组织随机抽取了部分党员教师某天的学习成绩进行了整理,分成5个小组(x表示成绩,单位:分,且20x70),根据学习积分绘制出部分频数分布表和部分频数分布直方图,其中第2,第5两组测试成绩人数直方图的高度比为3:1,请结合下列图表中相关数据回答下列问题:(1)填空:a,b;(2)补全频数分布直方图;(3)据统计,该校共有党员教师200人,请你估计每天学习成绩在40分以上(包括40分)的党员教师人数.20.(8分)按要求解不等式(组)(1)求不等式的非负整数解.(2)解不等式组,并把它的解集在数轴上表示出来.21.(8分)在菱形ABCD中,∠BAD=60°.(1)如图1,点E为线段AB的中点,连接DE,CE,若AB=4,求线段EC的长;(2)如图2,M为线段AC上一点(M不与A,C重合),以AM为边,构造如图所示等边三角形AMN,线段MN与AD交于点G,连接NC,DM,Q为线段NC的中点,连接DQ,MQ,求证:DM=2DQ.22.(10分)(1);(2)÷23.(10分)如图,在▱ABCD中,点E、F分别在AD、BC上,且AE=CF.(1)求证:△AEB≌△CFD;(2)求证:四边形BFDE是平行四边形.24.(10分)探究:如图1,在△ABC中,AB=AC,CF为AB边上的高,点P为BC边上任意一点,PD⊥AB,PE⊥AC,垂足分别为点D,E.求证:PD+PE=CF.嘉嘉的证明思路:连结AP,借助△ABP与△ACP的面积和等于△ABC的面积来证明结论.淇淇的证明思路:过点P作PG⊥CF于G,可证得PD=GF,PE=CG,则PD+PE=CF.迁移:请参考嘉嘉或淇淇的证明思路,完成下面的问题:(1)如图1.当点P在BC延长线上时,其余条件不变,上面的结论还成立吗?若不成立,又存在怎样的关系?请说明理由;(1)当点P在CB延长线上时,其余条件不变,请直接写出线段PD,PE和CF之间的数量关系.运用:如图3,将矩形ABCD沿EF折叠,使点D落在点B处,点C落在点C′处.若点P为折痕EF上任一点,PG⊥BE于G,PH⊥BC于H,若AD=18,CF=5,直接写出PG+PH的值.25.(12分)如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD.(1)求证:四边形ACED是平行四边形;(2)若AC=2,CE=4,求四边形ACEB的周长.26.如图,在正方形网格中,每个小正方形的边长都是1,点A、B、C、D都在格点上.(1)线段AB的长是______;(2)在图中画出一条线段EF,使EF的长为,并判断AB、CD、EF三条线段的长能否成为一个直角三角形三边的长?说明理由.

参考答案一、选择题(每题4分,共48分)1、B【解析】

根据无理数的大概值和1,2比较大小,首先计算出每个选项的大概值.【详解】A选项不是无理数;B是无理数且C是无理数但D是无理数但故选B.【点睛】本题主要考查无理数的比较大小,关键在于估算结果.2、C【解析】

利用平行四边形的性质、矩形的性质、菱形的性质及正方形的性质分别判断后即可确定正确的选项.【详解】(1)平行四边形的对角线互相平分,正确,是真命题;(2)矩形的对角线相等,正确,是真命题;(3)菱形的对角线互相垂直平分,正确,是真命题;(4)正方形的对角线相等且互相垂直平分,正确,是真命题,故选C.【点睛】本题考查了命题与定理的知识,解题的关键是了解平行四边形的性质、矩形的性质、菱形的性质及正方形的性质,属于基础题,难度不大.3、D【解析】试题解析:故选D.4、B【解析】

设边数为x,根据题意可列出方程进行求解.【详解】设边数为x,根据题意得(x-2)×180°=2×360°解得x=6故选B.【点睛】此题主要考查多边形的内角和,解题的关键是熟知多边形的外角和为360°.5、B【解析】分析:根据三角形全等的判定方法得出乙和丙与△ABC全等,甲与△ABC不全等.详解:乙和△ABC全等;理由如下:在△ABC和图乙的三角形中,满足三角形全等的判定方法:SAS,所以乙和△ABC全等;在△ABC和图丙的三角形中,满足三角形全等的判定方法:AAS,所以丙和△ABC全等;不能判定甲与△ABC全等;故选B.点睛:本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.6、C【解析】

先利用得到,再求出m得到,接着求出直线与x轴的交点坐标为,然后写出直线在x轴上方和在直线下方所对应的自变量的范围.【详解】当时,,则,把代入y2得,解得,所以,解方程,解得,则直线与x轴的交点坐标为,所以不等式的解集是,故选C.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数的值大于或小于的自变量x的取值范围;从函数图象的角度看,就是确定直线在x轴上或下方部分所有的点的横坐标所构成的集合.7、B【解析】根据平均数是指在一组数据中所有数据之和再除以数据的个数,它是反映数据集中趋势的一项指标.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数,中位数代表了这组数据值大小的“中点”,不易受极端值影响,但不能充分利用所有数据的信息,对每一项进行分析即可:A、1.65米是该班学生身高的平均水平,正确;B、因为小华的身高是1.66米,不是中位数,所以班上比小华高的学生人数不会超过25人错误;C、这组身高数据的中位数不一定是1.65米,正确;D、这组身高数据的众数不一定是1.65米,正确.故选B.8、B【解析】

由正方形的对角线平分对角得∠DBE=45°,再由BE=BD,等边对等角结合三角形内角和求出∠BDE,最后由∠BDE和∠BDA之差求得∠ADE.【详解】∵四边形ABCD为正方形,∴∠DBE=45°,又∵BD=BE,∴△BDE为等腰三角形,∴∠BDE=(180°-45°)÷2=67.5,∴∠ADE=∠BDE-∠BDA=90°-67.5°=22.5°,故答案为:B.【点睛】此题主要考查正方形的性质,解题的关键是熟知等腰三角形与正方形的性质.9、A【解析】A.-=,正确;B.=,故B选项错误;C.与不是同类二次根式,不能合并,故C选项错误;D.=-2,故D选项错误,故选A.【点睛】本题考查了二次根式的加减运算以及二次根式的化简,熟练掌握运算法则和性质是解题的关键.10、C【解析】

首先将已知点的坐标代入直线y=x+1求得a的值,然后观察函数图象得到在点P的右边,直线y=x+1都在直线y=mx+n的下方,据此求解.【详解】依题意,得:,解得:a=1,由图象知:于不等式x+1≥mx+n的解集是x≥1【点睛】此题考查一次函数与一元一次不等式,解题关键在于求得a的值11、B【解析】

本题要判定,已知DE=BF,∠BFA=∠DEC=90°,具备了一直角边对应相等,故添加DC=BA后可根据HL判定.【详解】在△ABF与△CDE中,DE=BF,由DE⊥AC,BF⊥AC,可得∠BFA=∠DEC=90°.∴添加DC=AB后,满足HL.故选B.【点睛】本题考查了直角三角形全等的判定定理的应用,注意:判定两直角三角形全等的判定定理有SAS,ASA,AAS,SSS,HL.12、D【解析】

菱形具有平行四边形的全部性质,故分析ABCD选项,添加一个条件证明平行四边形为菱形即为菱形具有而平行四边形不具有的性质,即可解题.【详解】解:平行四边形的对角线互相平分,对边相等,

且菱形具有平行四边形的全部性质,

故A、B、C选项错误;

对角线平分一组对角的平行四边形是菱形,故D选项正确.

故选D.【点睛】本题考查了平行四边形的邻角互补、对角线互相平分,对角相等的性质,菱形每条对角线平分一组对边的性质,本题中熟练掌握菱形、平行四边形的性质是解题的关键.二、填空题(每题4分,共24分)13、【解析】

根据菱形面积=对角线积的一半可求,再根据勾股定理求出,然后由菱形的面积即可得出结果.【详解】∵四边形是菱形,∴,,∴,∵,∴,∴,∴,∵,∴;故答案为:.【点睛】本题考查了菱形的性质、勾股定理以及菱形面积公式.熟练掌握菱形的性质,由勾股定理求出是解题的关键.14、【解析】

根据题目所给定义求解即可.【详解】解:因为,所以.【点睛】本题考查了二次根式的运算,属于新定义题型,正确理解题中所给定义并进行应用是解题的关键.15、-1【解析】试题分析:由分式的加减运算法则可得:==-1考点:分式的运算点评:此题是简单题,分式的加减运算,分母相同的,分子直接相加减;分母不用的要先通分,然后再计算.16、1【解析】试题解析:连接AC,

∵AD=4m,CD=3m,∠ADC=90°,

∴AC===5,

∵AB=13m,BC=12m,

∴AB2=BC2+CD2,即△ABC为直角三角形,

∴这块地的面积为S△ABC-S△ACD=AC•BC-AD•CD=×5×12-×3×4=1.

17、1【解析】

因为关于的一元二次方程有两个相等的实数根,故,代入求解即可.【详解】根据题意可得:解得:m=1故答案为:1【点睛】本题考查的是一元二次方程的根的判别式,掌握根的判别式与方程的根的关系是关键.18、(1-x)2【解析】

根据题意即可列出代数式.【详解】∵某种手机每部售价为元,如果每月售价的平均降低率为,则一个月后的售价为(1-x)故两个月后的售价为(1-x)2【点睛】此题主要考查列代数式,解题的关键是根据题意找到数量关系.三、解答题(共78分)19、(1),;(2)如图;(3)人.【解析】

(1)根据3组的人数除以3组所占的百分比,可得总人数,进而可求出1组,4组的所占百分比,则、的值可求;(2)由(1)中的数据补全频数分布直方图;(3)根据题意,每天学习成绩在40分以上(包括40分)即是第3、4、5组,共占,再进一步结合总体人数计算即可.【详解】(1)由题意可知总人数(人),所以4组所占百分比,1组所占百分比,因为2组、5组两组测试成绩人数直方图的高度比为,所以,解得,所以,故答案为:,;(2)由(1)可知补全频数分布直方图如图所示;(3)每天学习成绩在40分以上(包括40分)组所占百分比,该校每天学习成绩在40分以上(包括40分)的党员教师人数为(人).【点睛】此题考查了条形统计图以及用样本估计总体,弄清题中的数据是解本题的关键.20、(1)非负整数解为1、2、3、4;(2)-3<x≤1,数轴上表示见解析【解析】

(1)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】(1)5(2x+1)≤3(3x-2)+15,10x+5≤9x-6+15,10x-9x≤-6+15-5,x≤4,则不等式的非负整数解为1、2、3、4;(2)解不等式2(x-3)<4x,得:x>-3,解不等式,得:x≤1,则不等式组的解集为-3<x≤1,将不等式组的解集表示在数轴上如下:【点睛】考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21、(1)2(2)证明见解析【解析】试题分析:(1)如图1,连接对角线BD,先证明△ABD是等边三角形,根据E是AB的中点,由等腰三角形三线合一得:DE⊥AB,利用勾股定理依次求DE和EC的长;(2)如图2,作辅助线,构建全等三角形,先证明△ADH是等边三角形,再由△AMN是等边三角形,得条件证明△ANH≌△AMD(SAS),则HN=DM,根据DQ是△CHN的中位线,得HN=2DQ,由等量代换可得结论.试题解析:解:(1)如图1,连接BD,则BD平分∠ABC,∵四边形ABCD是菱形,∴AD∥BC,∴∠A+∠ABC=180°,∵∠A=60°,∴∠ABC=120°,∴∠ABD=∠ABC=60°,∴△ABD是等边三角形,∴BD=AD=4,∵E是AB的中点,∴DE⊥AB,由勾股定理得:DE==,∵DC∥AB,∴∠EDC=∠DEA=90°,在Rt△DEC中,DC=4,EC===;(2)如图2,延长CD至H,使CD=DH,连接NH、AH,∵AD=CD,∴AD=DH,∵CD∥AB,∴∠HDA=∠BAD=60°,∴△ADH是等边三角形,∴AH=AD,∠HAD=60°,∵△AMN是等边三角形,∴AM=AN,∠NAM=60°,∴∠HAN+∠NAG=∠NAG+∠DAM,∴∠HAN=∠DAM,在△ANH和△AMD中,∵AH=AD,∠HAN=∠DAM,AN=AM,∴△ANH≌△AMD(SAS),∴HN=DM,∵D是CH的中点,Q是NC的中点,∴DQ是△CHN的中位线,∴HN=2DQ,∴DM=2DQ.点睛:本题考查了菱形的性质、三角形的中位线、三角形全等的性质和判定、等边三角形的性质和判定,本题证明△ANH≌△AMD是关键,并与三角形中位线相结合,解决问题;第二问有难度,注意辅助线的构建.22、(1)-45;(2)2+4.【解析】

(1)利用二次根式的乘法运算法则化简求出即可;(2)利用二次根式的除法运算法则化简求出即可.【详解】(1)==-18×=-45;(2)÷=(20-18+4)÷=()÷=2+4.【点睛】本题考查了二次根式的混合运算,正确化简二次根式是解题的关键.23、(1)详见解析;(2)详见解析.【解析】

(1)根据SAS即可证明.(2)只要证明DE∥BF,DE=BF即可解决问题.【详解】(1)证明:∵四边形ABCD是平行四边形,∴∠A=∠C,AB=CD,∵AE=CF,∴△AED≌CFD.(2)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴ED=BF,∵ED∥BF,∴四边形EBFD是平行四边形【点睛】本题考查平行四边形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.24、(1)不成立,CF=PD-PE,理由见解析;(1)CF=PE-PD理由见解析;运用:PG+PH的值为11.【解析】

(1)由三角形的面积和差关系可求解;(1)由三角形的面积和差关系可求解;(3)易证BE=BF,过点E作EQ⊥BF,垂足为Q,利用探究中的结论可得PG+PH=EQ,易证EQ=AB,BF=BE=DE=3,只需求出AB即可.【详解】解:(1)不成立,CF=PD-PE理由如下:连接AP,如图,∵PD⊥AB,PE⊥AC,CF⊥AB,且S△ABC=S△ABP-S△ACP,∴AB•CF=AB•PD-AC•PE.∵AB=AC,∴CF=PD-PE.(1)CF=PE-PD理由如下:如图,∵S△ABC=S△ACP-S△ABP,∴AB•CF=AC•PE-AB•PD∵AB=AC∴CF=PE-PD运用:过点E作EQ⊥BC,垂足为Q,如图,∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∠A=∠ABC=90°.∵AD=18,CF=5,∴BF=BC-CF=AD-CF=3.由折叠可得:DE=BB,∠BEF=∠DEF.∵AD∥BC∴∠DEF=∠EFB∴∠BEF=∠BFE∴BE=BF=3=DE∴AE=5∵∠A=90°,∴AB==11∵EQ⊥BC,∠A=∠ABC=90°.∴∠EQC=90°=∠A=∠ABC∴四边形EQBA是矩形.∴E

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论