江苏省盐城市东台市三仓片区2024年八年级下册数学期末学业质量监测试题含解析_第1页
江苏省盐城市东台市三仓片区2024年八年级下册数学期末学业质量监测试题含解析_第2页
江苏省盐城市东台市三仓片区2024年八年级下册数学期末学业质量监测试题含解析_第3页
江苏省盐城市东台市三仓片区2024年八年级下册数学期末学业质量监测试题含解析_第4页
江苏省盐城市东台市三仓片区2024年八年级下册数学期末学业质量监测试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省盐城市东台市三仓片区2024年八年级下册数学期末学业质量监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=()A.90°-α B.90°+α C. D.360°-α2.六边形的内角和为()A.720° B.360° C.540° D.180°3.用反证法证明“在中,,则是锐角”,应先假设()A.在中,一定是直角 B.在中,是直角或钝角C.在中,是钝角 D.在中,可能是锐角4.正比例函数的图象向上平移1个单位后得到的函数解析式为()A. B. C. D.5.下列命题是真命题的是()A.若,则B.若,则C.若是一个完全平方公式,则的值等于D.将点向上平移个单位长度后得到的点的坐标为6.下列多边形中,不能够单独铺满地面的是()A.正三角形 B.正方形 C.正五边形 D.正六边形7.如图,在ΔABC中,AC=6,BC=8,AB=10,P是AB边上的动点,PE⊥AC,PF⊥BC,则EF的最小值为()A.125 B.245 C.58.下列各组数中,以它们为边长的线段不能构成直角三角形的是()A.1,, B.3,4,5 C.5,12,13 D.2,2,39.下列图案中,是中心对称图形的是()A. B.

C. D.10.体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一位同学的成绩比较稳定,通常要比较两名同学成绩的()A.平均数 B.方差 C.众数 D.中位数11.如果下列各组数是三角形的三边,则能组成直角三角形的是()A. B. C. D.12.下列四个圆形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转120°后,能与原图形完全重合的是()A. B. C. D.二、填空题(每题4分,共24分)13.在Rt△ABC中,∠A=90°,有一个锐角为10°,BC=1.若点P在直线AC上(不与点A,C重合),且∠ABP=30°,则CP的长为.14.如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH丄AB,垂足为H,则点0到边AB的距离OH=_____.15.如图,将△ABC沿BC方向平移3cm得到△DEF,若△ABC的周长为20cm,则四边形ABFD的周长为________.16.某n边形的每个外角都等于它相邻内角的,则n=_____.17.如图,在中,,,点、为边上两点,将、分别沿、折叠,、两点重合于点,若,则的长为__________.18.如图,已知四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积为______。三、解答题(共78分)19.(8分)某水果店经销进价分别为元/千克、元/千克的甲、乙两种水果,下表是近两天的销售情况:(进价、售价均保持不变,利润=售价-进价)时间甲水果销量乙水果销量销售收入周五千克千克元周六千克千克元(1)求甲、乙两种水果的销售单价;(2)若水果店准备用不多于元的资金再购进两种水果共千克,求最多能够进甲水果多少千克?(3)在(2)的条件下,水果店销售完这千克水果能否实现利润为元的目标?若能,请给出相应的采购方案;若不能,请说明理由.20.(8分)如图,矩形ABCD中,点E,F分别在边AB,CD上,点G,H在对角线AC上,EF与AC相交于点O,AG=CH,BE=DF.(1)求证:四边形EGFH是平行四边形;(2)若EG=EH,DC=8,AD=4,求AE的长.21.(8分)己知:如图1,⊙O的半径为2,BC是⊙O的弦,点A是⊙O上的一动点.图1图2(1)当△ABC的面积最大时,请用尺规作图确定点A位置(尺规作图只保留作图痕迹,不需要写作法);(2)如图2,在满足(1)条件下,连接AO并延长交⊙O于点D,连接BD并延长交AC的延长线于点E,若∠BAC=45°,求AC2+CE2的值.22.(10分)计算:(1)(+)(﹣)﹣(+3)2;(2).23.(10分)某边防局接到情报,近海处有一可疑船只正向公海方向行驶,边防局迅速派出快艇追赶(如图1).图2中、分别表示两船相对于海岸的距离(海里)与追赶时间(分)之间的关系.(1)求、的函数解析式;(2)当逃到离海岸12海里的公海时,将无法对其进行检查.照此速度,能否在逃入公海前将其拦截?若能,请求出此时离海岸的距离;若不能,请说明理由.24.(10分)如图中的虚线网格我们称为正三角形网格,它的每一个小三角形都是边长为1个单位长度的正三角形,这样的三角形称为单位正三角形.(1)图①中,已知四边形ABCD是平行四边形,求△ABC的面积和对角线AC的长;(2)图②中,求四边形EFGH的面积.25.(12分)一个不透明的袋子里装有黑白两种颜色的球其40只,这些球除颜色外都相同.小明从袋子中随机摸一个球,记下颜色后放回,不断重复,并绘制了如图所示的统计图,根据统计图提供的信息解决下列问题:(1)摸到黑球的频率会接近(精确到0.1);(2)估计袋中黑球的个数为只:(3)若小明又将一些相同的黑球放进了这个不透明的袋子里,然后再次进行摸球试验,当重复大量试验后,发现黑球的频率稳定在0.6左右,则小明后来放进了个黑球.26.正方形中,点是上一点,过点作交射线于点,连结.(1)已知点在线段上.①若,求度数;②求证:.(2)已知正方形边长为,且,请直接写出线段的长.

参考答案一、选择题(每题4分,共48分)1、C【解析】试题分析:∵四边形ABCD中,∠ABC+∠BCD=360°﹣(∠A+∠D)=360°﹣α,∵PB和PC分别为∠ABC、∠BCD的平分线,∴∠PBC+∠PCB=(∠ABC+∠BCD)=(360°﹣α)=180°﹣α,则∠P=180°﹣(∠PBC+∠PCB)=180°﹣(180°﹣α)=α.故选C.考点:1.多边形内角与外角2.三角形内角和定理.2、A【解析】

根据多边形内角和公式,即可求出.【详解】根据多边形内角和公式,六边形内角和故选A.【点睛】本题考查多边形内角和问题,熟练掌握公式是解题关键.3、B【解析】

假设命题的结论不成立或假设命题的结论的反面成立,然后推出矛盾,说明假设错误,结论成立.【详解】解:用反证法证明命题“在中,,则是锐角”时,应先假设在中,是直角或钝角.故选:B.【点睛】本题考查反证法,记住反证法的一般步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确.4、A【解析】

根据“上加下减”的平移原理,结合原函数解析式即可得出结论.【详解】根据“上加下减”的原理可得:函数y=−2x的图象向上平移1个单位后得出的图象的函数解析式为y=−2x+1.故选A【点睛】此题考查一次函数图象与几何变换,解题关键在于掌握平移的性质5、B【解析】

分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】、若,则,是假命题;、若,则,是真命题;、若是一个完全平方公式,则的值等于,是假命题;、将点向上平移3个单位后得到的点的坐标为,是假命题.故选:.【点睛】本题主要考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,判断命题的真假关键是要熟悉掌握相关定理.6、C【解析】

由镶嵌的条件知,在一个顶点处各个内角和为360°.【详解】∵正三角形的内角=180°÷3=60°,360°÷60°=6,即6个正三角形可以铺满地面一个点,∴正三角形可以铺满地面;∵正方形的内角=360°÷4=90°,360°÷90°=4,即4个正方形可以铺满地面一个点,∴正方形可以铺满地面;∵正五边形的内角=180°-360°÷5=108°,360°÷108°≈3.3,∴正五边形不能铺满地面;∵正六边形的内角=180°-360°÷6=120°,360°÷120°=3,即3个正六边形可以铺满地面一个点,∴正六边形可以铺满地面.故选C.【点睛】几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.7、B【解析】

先由矩形的判定定理推知四边形PECF是矩形;连接PC,则PC=EF,所以要使EF,即PC最短,只需PC⊥AB即可;然后根据三角形的等积转换即可求得PC的值.【详解】如图,连接PC.∵在△ABC中,AC=6,BC=8,AB=10,∴AB2=AC2+BC2,∴∠C=90°.又∵PE⊥AC于点E,PF⊥BC于点F.∴∠CEP=∠CFP=90°,∴四边形PECF是矩形.∴PC=EF.∴当PC最小时,EF也最小,即当PC⊥AB时,PC最小,∵12BC•AC=12AB•PC,即PC=∴线段EF长的最小值为245故选B.【点睛】本题考查了勾股定理、矩形的判定与性质、垂线段最短.利用“两点之间垂线段最短”找出PC⊥AB时,PC取最小值是解答此题的关键.8、D【解析】分析:欲求证是否为直角三角形,利用勾股定理的逆定理即可.这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.详解:A、12+()2=3=()2,故是直角三角形,故错误;B、42+32=25=52,故是直角三角形,故错误;C、52+122=169=132,故是直角三角形,故错误;D、22+22=8≠32,故不是直角三角形,故正确.故选D.点睛:本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.9、D【解析】

根据中心对称图形的定义逐一进行分析判断即可.【详解】A、不是中心对称图形,故不符合题意;B、不是中心对称图形,故不符合题意;C、不是中心对称图形,故不符合题意;D、是中心对称图形,故符合题意,故选D.【点睛】本题考查了中心对称图形的识别,熟练掌握中心对称图形的概念是解题的关键.10、B【解析】

平均数、众数、中位数反映的是数据的集中趋势,方差反映的是数据的离散程度,方差越大,说明这组数据越不稳定,方差越小,说明这组数据越稳定.【详解】解:由于方差能反映数据的稳定性,故需要比较这两名同学5次短跑训练成绩的方差.故选B.【点睛】考核知识点:均数、众数、中位数、方差的意义.11、A【解析】

根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,就是直角三角形,没有这种关系,就不是直角三角形,分析得出即可.【详解】A.∵1+=2,∴此三角形是直角三角形,正确;B.∵1+3≠4,∴此三角形不是直角三角形,不符合题意;C.∵2+3≠6,∴此三角形不是直角三角形,不合题意;D.∵4+5≠6,∴此三角形不是直角三角形,不合题意.故选:A.【点睛】此题考查勾股定理的逆定理,解题关键在于掌握计算公式.12、A【解析】试题分析:A、最小旋转角度==120°;B、最小旋转角度==90°;C、最小旋转角度==180°;D、最小旋转角度==72°;综上可得:顺时针旋转120°后,能与原图形完全重合的是A.故选A.考点:旋转对称图形.二、填空题(每题4分,共24分)13、1或2或4【解析】

如图1:当∠C=10°时,∠ABC=30°,与∠ABP=30°矛盾;如图2:当∠C=10°时,∠ABC=30°,∵∠ABP=30°,∴∠CBP=10°,∴△PBC是等边三角形,∴CP=BC=1;如图3:当∠ABC=10°时,∠C=30°,∵∠ABP=30°,∴∠PBC=10°﹣30°=30°,∴PC=PB,∵BC=1,∴AB=3,∴PC=PB===2如图4:当∠ABC=10°时,∠C=30°,∵∠ABP=30°,∴∠PBC=10°+30°=90°,∴PC=BC÷cos30°=4.故答案为1或2或4.考点:解直角三角形14、【解析】试题分析:根据菱形的对角线互相垂直平分求出OA=4、OB=3,再利用勾股定理列式求出AB=5,然后根据△AOB的面积列式得,解得OH=.故答案为.点睛:此题主要考查了菱形的性质,解题时根据菱形的对角线互相垂直平分求出OA、OB,再利用勾股定理列式求出AB,然后根据△AOB的面积列式计算即可得解.15、26cm【解析】

先根据平移的性质得DF=AC,AD=CF=3cm,再由△ABC的周长为20cm得到AB+BC+AC=20cm,然后利用等线段代换可计算出AB+BC+CF+DF+AD=26(cm),于是得到四边形ABFD的周长为26cm.【详解】∵△ABC沿BC方向平移3cm得到△DEF,∴DF=AC,AD=CF=3cm,∵△ABC的周长为20cm,即AB+BC+AC=20cm,∴AB+BC+CF+DF+AD=AB+BC+AC+AD+CF=20+3+3=26(cm),即四边形ABFD的周长为26cm.故答案是:26cm.【点睛】考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.16、1.【解析】

根据每个外角都等于相邻内角的,并且外角与相邻的内角互补,就可求出外角的度数;根据外角度数就可求得边数.【详解】解:因为多边形的每个外角和它相邻内角的和为180°,又因为每个外角都等于它相邻内角的,所以外角度数为180°×=36°.∵多边形的外角和为360°,所以n=360÷36=1.故答案为:1.【点睛】本题考查多边形的内角与外角关系,以及多边形的外角和为360°.17、3或2【解析】

过点A作AG⊥BC,垂足为G,由等腰三角形的性质可求得AG=BG=GC=2,设BD=x,则DF=x,EF=7-x,然后在Rt△DEF中依据勾股定理列出关于x的方程,从而可求得DG的值,然后依据勾股定理可求得AD的值.【详解】如图所示:过点A作AG⊥BC,垂足为G.

∵AB=AC=2,∠BAC=90°,

∴BC==1.

∵AB=AC,AG⊥BC,

∴AG=BG=CG=2.

设BD=x,则EC=7-x.

由翻折的性质可知:∠B=∠DFA=∠C=∠AFE=35°,DB=DF,EF=EC.

∴DF=x,EF=7-x.

在Rt△DEF中,DE2=DF2+EF2,即25=x2+(7-x)2,解得:x=3或x=3.

当BD=3时,DG=3,AD=当BD=3时,DG=2,AD=∴AD的长为3或2故答案为:3或2【点睛】本题主要考查的是翻折的性质、勾股定理的应用、等腰直角三角形的性质,依据题意列出关于x的方程是解题的关键.18、36【解析】

连接AC,在直角三角形ABC中,由AB及BC的长,利用勾股定理求出AC的长,再由AD及CD的长,利用勾股定理的逆定理得到三角形ACD为直角三角形,根据四边形ABCD的面积=直角三角形ABC的面积+直角三角形ACD的面积,即可求出四边形的面积.【详解】连接AC,如图所示:∵∠B=90°,∴△ABC为直角三角形,又∵AB=3,BC=4,∴根据勾股定理得:AC==5,又∵CD=12,AD=13,∴AD=13=169,CD+AC=12+5=144+25=169,∴CD+AC=AD,∴△ACD为直角三角形,∠ACD=90°,则S四边形ABCD=S△ABC+S△ACD=AB⋅BC+AC⋅CD=×3×4+×5×12=36,故四边形ABCD的面积是36【点睛】此题考查勾股定理的逆定理,勾股定理,解题关键在于作辅助线三、解答题(共78分)19、(1)甲、乙两种水果的销售单价分别为元、元;(2)最多购进甲水果千克时,采购资金不多于元;(3)在(2)的条件下水果店不能实现利润元的目标.【解析】

(1)设甲、乙两种水果的销售单价分别为元、元,根据题意找到等量关系进行列二元一次方程组进行求解;(2)设购进甲水果为千克,乙水果千克时采购资金不多于元,根据题意列出不等式即可求解;(3)根据题意找到等量关系列出方程即可求解.【详解】解:(1)设甲、乙两种水果的销售单价分别为元、元,依题意得:解得:所以甲、乙两种水果的销售单价分别为元、元(2)设购进甲水果为千克,乙水果千克时采购资金不多于元;根据题意得:.解得:所以最多购进甲水果千克时,采购资金不多于元(3)依题意得:解得:因为,所以在(2)的条件下水果店不能实现利润元的目标.【点睛】此题主要考查二元一次方程组的应用,解题的关键是根据题意找到等量关系、不等关系进行列式求解.20、(1)见解析;(2)5.【解析】

(1)依据矩形的性质,即可得出△AEG≌△CFH,进而得到GE=FH,∠CHF=∠AGE,由∠FHG=∠EGH,可得FH∥GE,即可得到四边形EGFH是平行四边形;(2)由菱形的性质,即可得到EF垂直平分AC,进而得出AF=CF=AE,设AE=x,则FC=AF=x,DF=8-x,依据Rt△ADF中,AD2+DF2=AF2,即可得到方程,即可得到AE的长.【详解】(1)证明:,,,(2)故答案为5.【点睛】此题考查了菱形的性质、矩形的性质、全等三角形的判定与性质以及勾股定理的运用.注意准确作出辅助线是解此题的关键.21、(1)见解析;(1)2.【解析】

(1)作BC的垂直平分线交优弧BC于A,则点A满足条件;

(1)利用圆周角定理得到∠ACD=90°,根据圆内接四边形的性质得∠CDE=∠BAC=45°,通过判断△DCE为等腰直角三角形得到CE=CD,然后根据勾股定理得到AC1+CE1=AC1+CD1=AD1.【详解】解:(1)如图1,点A为所作;

(1)如图1,连接CD,∵AD为直径,

∴∠ACD=90°,

∵∠CDE=∠BAC=45°,

∴△DCE为等腰直角三角形,

∴CE=CD,

∴AC1+CE1=AC1+CD1=AD1=41=2.【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了圆周角定理.22、(1)-19-6;(2)3-.【解析】分析:(1)用平方差公式和完全平方公式计算;(2)把式子中的二次根式都化为最简二次根式后,再加减.详解:(1)()(﹣)﹣(+3)2=7-5-(3+6+18)=-19-6;(2)==3-.点睛:本题考查了二次根式的混合运算,二次根式的混合运算顺序与实数的混合运算顺序一样,先乘方,再乘除,最后加减,有括号时要先算括号里的或先去括号,能够使乘法公式的尽量使用乘法公式.23、(1)A船:,B船:;(2)能追上;此时离海岸的距离为海里.【解析】

(1)根据函数图象中的数据用待定系数法即可求出,的函数关系式;(2)根据(2)中的函数关系式求其函数图象交点可以解答本题.【详解】解:(1)由题意,设.∵在此函数图像上,∴,解得,由题意,设.∵,在此函数图像上,∴.解得,.∴.(2)由题意,得,解得.∵,∴能追上.此时离海岸的距离为海里.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.24、(1)△ABC的面积为,AC=;(2)四边形EFGH的面积为.【解析】

(1)首先过点A作AK⊥BC于K,由每一个小三角形都是边长为1个单位长度的正三角形,可求得每一个小正三角形的高为,进一步可求得△ABC的面积,然后由勾股定理可求得对角线AC的长;(2)过点E作EP⊥FH于P,则四边形EFGH的面积=2S△EFH=2××EP×FH=EP×FH,再代入数据计算即可得出结果.【详解】解:(1)如图③,过点A作AK⊥BC于K,∵每一个小三角形都是边长为1个单位长度的正三角形,∴每一个小正三角形的高为,∴.∴△ABC的面积=;∵BK=,∴.∴.(2)如图④,过点E作E

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论