2024年内蒙古鄂尔多斯市东胜区八年级下册数学期末联考模拟试题含解析_第1页
2024年内蒙古鄂尔多斯市东胜区八年级下册数学期末联考模拟试题含解析_第2页
2024年内蒙古鄂尔多斯市东胜区八年级下册数学期末联考模拟试题含解析_第3页
2024年内蒙古鄂尔多斯市东胜区八年级下册数学期末联考模拟试题含解析_第4页
2024年内蒙古鄂尔多斯市东胜区八年级下册数学期末联考模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年内蒙古鄂尔多斯市东胜区八年级下册数学期末联考模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,已知二次函数,它与轴交于、,且、位于原点两侧,与的正半轴交于,顶点在轴右侧的直线:上,则下列说法:①②③④其中正确的结论有()A.①② B.②③ C.①②③ D.①②③④2.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:甲26778乙23488关于以上数据,说法正确的是()A.甲、乙的众数相同 B.甲、乙的中位数相同C.甲的平均数小于乙的平均数 D.甲的方差小于乙的方差3.如图,平行四边形ABCD中,AE平分∠BAD交边BC于点E,已知AD=7,CE=3,则AB的长是()A.7 B.3 C.3.5 D.44.如图,四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.∠ABC=∠ADC,∠BAD=∠DCB B.AB∥DC,AB=DCC.AB∥DC,AD∥BC D.AC=BDC5.如图,在平面直角坐标系中有两点A(5,0),B(0,4),则它们之间的距离为()A. B. C. D.6.已知下列图形中的三角形顶点都在正方形网格的格点上,图中的三角形是直角三角形的是()A. B.C. D.7.关于函数y=2x,下列说法错误的是()A.它是正比例函数 B.图象经过(1,2)C.图象经过一、三象限 D.当x>0,y<08.已知菱形的面积为10,对角线的长分别为x和y,则y关于x的函数图象是A. B. C. D.9.一次函数y=kx+1,y随x的增大而减小,则一次函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限10.下列各式正确的是(

)A.32=±3

B.(-3)2=±3

C.(-3)2=3

D.(-3)211.如图,将△ABC绕点A旋转至△ADE的位置,使点E落在BC边上,则对于结论:①DE=BC;②∠EAC=∠DAB;③EA平分∠DEC;④若DE∥AC,则∠DEB=60°;其中正确结论的个数是()A.4 B.3 C.2 D.112.某校在体育健康测试中,有名男生“引体向上”的成绩(单位:次)分别是,,,,,,,,这组数据的中位数和众数分别是()A., B., C., D.,二、填空题(每题4分,共24分)13.命题“在中,如果,那么是等边三角形”的逆命题是_____.14.在湖的两侧有A,B两个消防栓,为测定它们之间的距离,小明在岸上任选一点C,并量取了AC中点D和BC中点E之间的距离为16米,则A,B之间的距离应为_________米.15.在△ABC中,∠C=90∘,AC=3,BC=4,点D,E,F分别是边AB,AC,BC的中点,则△DEF的周长是16.如图,在平行四边形ABCD中,AB=10,BC=6,AC⊥BC,则平行四边形ABCD的面积为___________.17.两条平行线间的距离公式一般地;两条平行线间的距离公式如:求:两条平行线的距离.解:将两方程中的系数化成对应相等的形式,得因此,两条平行线的距离是____________.18.如图,已知一块直角三角板的直角顶点与原点重合,另两个顶点,的坐标分别为,,现将该三角板向右平移使点与点重合,得到,则点的对应点的坐标为__________.三、解答题(共78分)19.(8分)如图,已知E、F是平行四边形ABCD对角线AC上的两点,并且AE=CF.请说明四边形BFDE是平行四边形.20.(8分)选用适当的方法解下列方程:(1)(x-2)2-9=0;(2)x(x+4)=x+4.21.(8分)如图,已知在中,对角线,,平分交的延长线于点,连接.(1)求证:.(2)设,连接交于点.画出图形,并求的长.22.(10分)甲、乙两位同学参加数学竞赛辅导,三项培训内容的考试成绩如下表,现要选拔一人参赛.(1)若按三项考试成绩的平均分选拔,应选谁参赛;(2)若代数、几何、综合分别按20%、30%、50%的比例计算平均分,应选谁参赛.代数几何综合甲859275乙70839023.(10分)在矩形中,,,将沿着对角线对折得到.(1)如图,交于点,于点,求的长.(2)如图,再将沿着对角线对折得到,顺次连接、、、,求:四边形的面积.24.(10分)如图,某住宅小区在施工过程中留下了一块空地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,小区为美化环境,欲在空地上铺草坪,已知草坪每平方米100元,试问用该草坪铺满这块空地共需花费多少元?25.(12分)如图是甲、乙两名射击运动员的5次训练成绩的折线统计图:(1)分别计算甲、乙运动员射击环数;(2)分别计算甲、乙运动员射击成绩的方差;(3)如果你是教练员,会选择哪位运动员参加比赛,请说明理由.26.某市推出电脑上网包月制,每月收取费用y(元)与上网时间x(小时)的函数关系如图所示,其中BA是线段,且BA∥x轴,AC是射线.(1)当x≥30,求y与x之间的函数关系式;(2)若小李4月份上网20小时,他应付多少元的上网费用?(3)若小李5月份上网费用为75元,则他在该月份的上网时间是多少?

参考答案一、选择题(每题4分,共48分)1、D【解析】

由根与系数的关系,结合顶点位置和坐标轴位置,进行分析即可得到答案.【详解】解:设函数图像与x轴交点的横坐标分别为x1,x2则根据根于系数的关系得到:x1+x2=b,x1x2=c∵A,B两点位于y轴两侧,且对称轴在y轴的右侧,则b>0函数图像交y轴于C点,则c<0,∴bc<0,即①正确;又∵顶点坐标为(),即()∴=4,即又∵=,即∴AB=4即③正确;又∵A,B两点位于y轴两侧,且对称轴在y轴的右侧∴<2,即b<4∴0<b<4,故②正确;∵顶点的纵坐标为4,∴△ABD的高为4∴△ABD的面积=,故④正确;所以答案为D.【点睛】本题考查了二次函数与一元二次方程的联系,熟练掌握二次函数和一元二次方程的性质是解答本题的关键.2、D【解析】

分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得.【详解】甲:数据7出现了2次,次数最多,所以众数为7,排序后最中间的数是7,所以中位数是7,,=4.4,乙:数据8出现了2次,次数最多,所以众数为8,排序后最中间的数是4,所以中位数是4,,=6.4,所以只有D选项正确,故选D.【点睛】本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键.3、D【解析】

先根据角平分线及平行四边形的性质得出∠BAE=∠AEB,再由等角对等边得出BE=AB,从而由EC的长求出BE即可解答.【详解】解:∵AE平分∠BAD交BC边于点E,∴∠BAE=∠EAD,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=7,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE,∵EC=3,∴BE=BC-EC=7-3=4,∴AB=4,故选D.【点睛】本题主要考查了角平分线、平行四边形的性质及等腰三角形的判定,根据已知得出∠BAE=∠AEB是解决问题的关键.4、D【解析】分析:本题根据平行四边形的判定定理即可得出答案.详解:A根据两组对角相等可以得出平行四边形;B根据一组对边平行且相等可以得出平行四边形;C根据两组对边分别平行可以得出平行四边形;D无法判定,故选D.点睛:本题主要考查的是平行四边形的判定定理,属于基础题型.明确判定定理是解决这个问题的关键.5、A【解析】

先根据A、B两点的坐标求出OA及OB的长,再根据勾股定理即可得出结论.【详解】∵A(5,0)和B(0,4),∴OA=5,OB=4,∴AB=,即这两点之间的距离是.故选A.【点睛】本题考查了勾股定理的应用,根据坐标得出OA及OB的长是解题关键.6、D【解析】

根据勾股定理求出三角形的三边,然后根据勾股定理的逆定理即可判断.【详解】由勾股定理可得:A、三角形三边分别为3、,2;B、三角形三边分别为、,2;C、三角形三边分别为、2,3;D、三角形三边分别为2、,;∵D图中(2)2+()2=()2,其他三角形不符合勾股定理逆定理,∴图中的三角形是直角三角形的是D,故选:D.【点睛】此题考查了勾股定理和勾股定理逆定理的运用,本题中根据勾股定理计算三角形的三边长是解题的关键.7、D【解析】

根据正比例函数的图象与系数的关系解答,对于y=kx,当k>0时,y=kx的图象经过一、三象限;当k<0时,y=kx的图象经过二、四象限.【详解】关于函数y=2x,A、它是正比例函数,说法正确,不合题意;B、当x=1时,y=2,图象经过(1,2),说法正确,不合题意;C、图象经过一、三象限,说法正确,不合题意;D、当x>0时,y>0,说法错误,符合题意;故选D.【点睛】此题考查了正比例函数的性质和,熟练掌握正比例函数的定义与性质是解题关键.8、D【解析】

根据菱形的面积列出等式后即可求出y关于x的函数式.【详解】由题意可知:10=xy,∴y=(x>0),故选:D.【点睛】本题考查反比例函数,解题的关键是熟练运用菱形的面积公式,本题属于基础题型.9、C【解析】

根据函数的增减性及解析式判断函数图象所经过的象限即可.【详解】∵一次函数y=kx+1,y随x的增大而减小,∴k<0,∵1>0,∴函数图象经过一、二、四象限.故选C.【点睛】首先能够根据待定系数法正确求出直线的解析式.在直线y=kx+b中,当k>0,b>0时,函数图象过一、二、三象限,y随x增大而增大;当k>0,b<0时,函数图象过一、三、四象限,y随x增大而增大;当k<0,b>0时,函数图象过一、二、四象限,y随x增大而减小;当k<0,b<0时,函数图象过二、三、四象限,y随x增大而减小.10、C【解析】

根据二次根式的性质a2【详解】解:A.32=3B.(-3)2=3C.(-3)2=32=3,D.(-3)2=32故选C.【点睛】本题考查了二次根式的性质与化简.熟练掌握二次根式的性质a211、A【解析】

由旋转的性质可知,△ABC≌△ADE,DE=BC,可得①正确;∠CAE=∠CAB﹣∠BAE,∠DAB=∠DAE﹣∠BAE,可得∠EAC=∠DAB,可判定②正确;AE=AC,则∠AEC=∠C,再由∠C=∠AED,可得∠AEC=∠AED;可判定③正确;根据平行线的性质可得可得∠C=∠BED,∠AEC=∠AED=∠C,根据平角的定义可得∠DEB=60°;综上即可得答案.【详解】∵将△ABC绕点A旋转至△ADE的位置,使点E落在BC边上,∴△ABC≌△ADE,∴DE=BC,AE=AC,∠BAC=∠DAE,∠C=∠AED,故①正确;∴∠CAE=∠CAB﹣∠BAE,∠DAB=∠DAE﹣∠BAE,∴∠EAC=∠DAB;故②正确;∵AE=AC,∴∠AEC=∠C,∴∠AEC=∠AED,∴EA平分∠DEC;故③正确;∵DE∥AC,∴∠C=∠BED,∵∠AEC=∠AED=∠C,∴∠DEB=∠AEC=∠AED=60°,故④正确;综上所述:正确的结论是①②③④,共4个,故选:A.【点睛】本题考查旋转的性质,旋转前、后的两个图形全等,对应边、对应角相等,对应点与旋转中心所连线段的夹角等于旋转角.12、B【解析】

先把原数据按由小到大排列,然后根据中位数和众数的定义求解.【详解】解:原数据按由小到大排列为:7,8,9,10,1,1,14,16,所以这组数据的中位数==11,众数为1.故选:B.【点睛】本题主要考查的是学生对中位数和众数的定义等知识的掌握情况及灵活运用能力,解题的关键在于能够熟知中位数和众数的定义,由此即可解答.众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.二、填空题(每题4分,共24分)13、如果是等边三角形,那么.【解析】

把原命题的题设与结论进行交换即可.【详解】“在中,如果,那么是等边三角形”的逆命题是“如果是等边三角形,那么”.故答案为:如果是等边三角形,那么.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.也考查了逆命题.14、32【解析】分析:可得DE是△ABC的中位线,然后根据三角形的中位线定理,可得DE∥AB,且AB=2DE,再根据DE的长度为16米,即可求出A、B两地之间的距离.详解:∵D、E分别是CA,CB的中点,

∴DE是△ABC的中位线,

∴DE∥AB,且AB=2DE,

∵DE=16米,

∴AB=32米.

故答案是:32.点睛:本题考查了三角形的中位线定理的应用,解答本题的关键是:明确三角形的中位线平行于第三边,并且等于第三边的一半.15、6【解析】

首先利用勾股定理求得斜边长,然后利用三角形中位线定理求得答案即可.【详解】解:∵Rt△ABC中,∠C=90°,AC=3,BC=4,∴AB=AC2+BC∵点D、E、F分别是边AB、AC、BC的中点,∴DE=12BC,DF=12AC,EF=1∴C△DEF=DE+DF+EF=12BC+12AC+12AB=1故答案为:6.【点睛】本题考查了勾股定理和三角形中位线定理.16、48【解析】

在Rt△ACB中,AB=10,BC=6,由勾股定理可得,AC=8,再根据平行四边形的面积公式即可求解.【详解】∵AC⊥BC,∴∠ACB=90°,在Rt△ACB中,AB=10,BC=6,由勾股定理可得,AC=8,∴平行四边形ABCD的面积为:BC×AC=6×8=48.故答案为:48.【点睛】本题考查了勾股定理及平行四边形的性质,利用勾股定理求得AC=8是解决问题的关键.17、1【解析】试题分析:认真读题,可知A=3,B=4,C1=-10,C2=-5,代入距离公式为===1.18、【解析】

根据A点的坐标,得出OA的长,根据平移的条件得出平移的距离,根据平移的性质进而得出答案.【详解】∵A(-1,0),∴OA=1,

∵一个直角三角板的直角顶点与原点重合,现将该三角板向右平移使点A与点O重合,得到△OCB′,∴平移的距离为1个单位长度,∵点B的坐标为∴点B的对应点B′的坐标是,故答案为:.【点睛】此题主要考查根据平移的性质求点坐标,熟练掌握,即可解题.三、解答题(共78分)19、证明见解析.【解析】

连接BD,利用对角线互相平分来证明即可.【详解】证明:连接BD,交AC于点O.∵四边形ABCD是平行四边形∴OA=OCOB=OD(平行四边形的对角线互相平分)又∵AE=CF∴OA﹣AE=OC﹣CF,即OE=OF∴四边形BFDE是平行四边形(对角线互相平分的四边形是平行四边形)【点睛】本题考查平行四边形的性质和判定,解题的关键是熟练掌握平行四边形的判定和性质,属于中考常考题型.20、x1=5,x2=-1;(2)x1=1,x2=-4.【解析】

根据一元二次方程的解法依次计算即可【详解】(x-2)2=9x-2=±3∴x1=5x2=-1(2)x(x+4)=x+4若x+4≠0则x=1若x+4=0则x=-4∴x1=1x2=-4【点睛】熟练掌握一元二次方程的解法是解决本题的关键,难度不大21、(1)证明见解析;(2).【解析】

(1)根据角平分线的性质可得∠ADE=∠CDE,再根据平行四边形的性质和平行线的性质可得∠CDE=∠AED,利用等量代换可得∠ADE=∠AED,根据等角对等边可得AD=AE;

(2)首先利用直角三角形的性质计算出BD,根据勾股定理可得AB长,然后再根据平行四边形的性质得出,,再利用勾股定理可得OA的值,进而可得答案.【详解】(1)证明:∵DE平分∠ADC,

∴∠ADE=∠CDE,

∵四边形ABCD是平行四边形,

∴CD∥AB,

∴∠CDE=∠AED,

∴∠ADE=∠AED,

∴AD=AE;

(2)解:在中,∠DAB=30°,AD=12,

∴,

∴,

∵四边形ABCD是平行四边形,

∴,,在中,,

∴.【点睛】本题主要考查了平行四边形的性质,直角三角形的性质,角平分线的性质以及勾股定理的应用,解题的关键是掌握平行四边形的对角线互相平分.22、(1)选择甲;(2)选择乙.【解析】

(1)分别求出甲、乙的算术平均数进行选择即可;(2)分别求出甲、乙的加权平均数进行选择.【详解】解:(1),∵∴选择甲;(2)∵∴选择乙.故答案为(1)选择甲;(2)选择乙.【点睛】本题考查了算术平均数和加权平均数的求法.23、(1);(2)的面积是.【解析】

(1)由矩形的性质可得AB=CD=3,AD=BC=4,∠B=∠D=90°,AD∥BC,由勾股定理可求AC=5,由折叠的性质和平行线的性质可得AE=CE,由勾股定理可求AE的长,由三角形面积公式可求EF的长;(2)由折叠的性质可得AB=AM=3,CD=CN=3,∠BAC=∠CAM,∠ACD=∠ACN,AC⊥DN,DF=FN,由“SAS”可证△BAM≌△DCN,△AMD≌△CNB可得MD=BN,BM=DN,可得四边形MDNB是平行四边形,通过证明四边形MDNB是矩形,可得∠BND=90°,由三角形面积公式可求DF的长,由勾股定理可求BN的长,即可求四边形BMDN的面积.【详解】解:(1)∵四边形ABCD是矩形∴AB=CD=3,AD=BC=4,∠B=∠D=90°,AD∥BC∴AC==5,∵将Rt△ABC沿着对角线AC对折得到△AMC.∴∠BCA=∠ACE,∵AD∥BC∴∠DAC=∠BCA∴∠EAC=∠ECA∴AE=EC∵EC2=ED2+CD2,∴AE2=(4−AE)2+9,∴AE=,∵S△AEC=×AE×DC=×AC×EF,∴×3=5×EF,∴EF=;(2)如图所示:∵将Rt△ABC沿着对角线AC对折得到△AMC,将Rt△ADC沿着对角线AC对折得到△ANC,∴AB=AM=3,CD=CN=3,∠BAC=∠CAM,∠ACD=∠ACN,AC⊥DN,DF=FN,∵AB∥CD∴∠BAC=∠ACD∴∠BAC=∠ACD=∠CAM=∠ACN∴∠BAM=∠DCN,且BA=AM=CD=CN∴△BAM≌△DCN(SAS)∴BM=DN∵∠BAM=∠DCN∴∠BAM−90°=∠DCN−90°∴∠MAD=∠BCN,且AD=BC,AM=CN∴△AMD≌△CNB(SAS)∴MD=BN,且BM=DN∴四边形MDNB是平行四边形连接BD,由(1)可知:∠EAC=∠ECA,∵∠AMC=∠ADC=90°∴点A,点C,点D,点M四点共圆,∴∠ADM=∠ACM,∴∠ADM=∠CAD∴AC∥MD,且AC⊥DN∴MD⊥DN,∴四边形BNDM是矩形∴∠BND=90°∵S△ADC=×AD×CD=×AC×DF∴DF=∴DN=∵四边形ABCD是矩形∴AC=BD=5,∴BN=∴四边形BMDN的面积=BN×DN=×=.【点睛】本题是四边形综合题,考查了矩形的判定和性质,折叠的性质,勾股定理,全等三角形的判定和性质,证明四边形BNDM是矩形是本题的关键.24、2400元【解析】试题分析:连接AC,根据勾股定理求出AC,根据勾股定理的逆定理求出∠ACB=90°,求出区域的面积,即可求出答案

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论