版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届楚雄市重点中学八年级数学第二学期期末检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,△ABC顶点C的坐标是(1,-3),过点C作AB边上的高线CD,则垂足D点坐标为()A.(1,0) B.(0,1)C.(-3,0) D.(0,-3)2.如图,在10×6的网格中,每个小方格的边长都是1个单位,将△ABC平移到△DEF的位置,下面正确的平移步骤是()A.先把△ABC向左平移5个单位,再向下平移2个单位B.先把△ABC向右平移5个单位,再向下平移2个单位C.先把△ABC向左平移5个单位,再向上平移2个单位D.先把△ABC向右平移5个单位,再向上平移2个单位3.如图,△ABC的周长为26,点D,E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直于AD,垂足为P.若BC=10,则PQ的长为()A. B. C.3 D.44.如图,函数y=kx与y=ax+b的图象交于点P(-4,-2).则不等式kx<ax+b的解集是()A.x<-2 B.x>-2 C.x<-4 D.x>-45.矩形中,,,点为的中点,将矩形右下角沿折叠,使点落在矩形内部点位置,如图所示,则的长度为()A. B. C. D.6.将直线y=3x-1向上平移1个单位长度,得到的一次函数解析式为()A.y=3x B.y=3x+1 C.y=3x+2 D.y=3x+37.如图,一个长方体铁块放置在圆柱形水槽容器内,向容器内按一定的速度均匀注水,60秒后将容器内注满.容器内水面的高度h(cm)与注水时间t(s)之间的函数关系图象大致是()A. B. C. D.8.如图,是正内一点,,,,将线段以点为旋转中心逆时针旋转得到线段,下列结论:①可以由绕点逆时针旋转得到;②点与点的距离为8;③;④;其中正确的结论是()A.①②③ B.①③④ C.②③④ D.①②9.如图是用程序计算函数值,若输入的值为3,则输出的函数值为()A.2 B.6 C. D.10.顺次连接对角线互相垂直的四边形的各边中点,所得图形一定是()A.矩形 B.直角梯形 C.菱形 D.正方形二、填空题(每小题3分,共24分)11.在某次射击训练中,教练员统计了甲、乙两位运动员10次射击成绩,两人的平均成绩都是8.8环,且方差分别是1.8环,1.3环,则射击成绩较稳定的运动员是______(填“甲”或“乙”).12.已知一次函数y=2(x﹣2)+b的图象在y轴上的截距为5,那么b=_____.13.如图,将平行四边形ABCD沿EF对折,使点A落在点C处,若∠A=60°,AD=6,AB=12,则AE的长为_______.14.若正多边形的每一个内角为,则这个正多边形的边数是__________.15.如图,在平面直角坐标系xOy中,函数y1的图象与直线y1=x+1交于点A(1,a).则:(1)k的值为______;(1)当x满足______时,y1>y1.16.将一次函数y=3x﹣1的图象沿y轴向_____平移_____个单位后,得到的图象经过原点.17.设,若,则____________.18.如果关于x的方程(m+2)x=8无解,那么m的取值范围是_____.三、解答题(共66分)19.(10分)在平行四边形ABCD中,点O是对角线BD中点,点E在边BC上,EO的延长线与边AD交于点F,连接BF、DE,如图1.(1)求证:四边形BEDF是平行四边形;(2)在(1)中,若DE=DC,∠CBD=45°,过点C作DE的垂线,与DE、BD、BF分别交于点G、H、R,如图2.①当CD=6,CE=4时,求BE的长.②探究BH与AF的数量关系,并给予证明.20.(6分)如图,路灯(点)距地面8米,身高1.6米的小明从距路灯的底部(点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了;变长或变短了多少米.21.(6分)为了解上一次八年级数学测验成绩情况,随机抽取了40名学生的成绩进行统计分析,这40名学生的成绩数据如下:55626753588387646885609481985183787766719172637588735271796374677861977672777971(1)将样本数据适当分组,制作频数分布表:分组频数(2)根据频数分布表,绘制频数直方图:(3)从图可以看出,这40名学生的成绩都分布在什么范围内?分数在哪个范围的人数最多?22.(8分)明德中学在商场购买甲、乙两种不同足球,购买甲种足球共花费3000元,购买乙种足球共花费2100元,购买甲种足球数量是购买乙种足球数量的2倍.且购买一个乙种足球比购买一个甲种足球多花20元.(1)求购买一个甲种足球、一个乙种足球各需多少元;(2)为响应国家“足球进校园”的号召,这所学校决定再次购买甲、乙两种足球共50个,恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%.如果此次购买甲、乙两种足球的总费用不超过2950元,那么这所学校最多可购买多少个乙种足球?23.(8分)如图,平行四边形中,对角线和相交于点,且(1)求证:;(2)若,求的长.24.(8分)如图,在平行四边形ABCD中,DB=DA,点F是AB的中点,连接DF并延长,交CB的延长线于点E,连接AE.(1)求证:△AFD≌△BFE;(2)求证:四边形AEBD是菱形;(3)若DC=,tan∠DCB=3,求菱形AEBD的面积.25.(10分)某学校打算招聘英语教师。对应聘者进行了听、说、读、写的英语水平测试,其中甲、乙两名应聘者的成绩(百分制)如下表所示。(1)如果学校想招聘说、读能力较强的英语教师,听、说、读、写成绩按照2:4:3:1的比确定,若在甲、乙两人中录取一人,请计算这两名应聘者的平均成绩(百分制)。从他们的成绩看,应该录取谁?(2)学校按照(1)中的成绩计算方法,将所有应聘者的最后成绩绘制成如图所示的频数分布直方图(每组分数段均包含左端数值,不包含右端数值,如最后左边一组分数为:)。①参加该校本次招聘英语教师的应聘者共有______________人(直接写出答案即可)。②学校决定由高分到低分录用3名教师,请判断甲、乙两人能否被录用?并说明理由。26.(10分)电力公司为鼓励市民节约用电,采取按月电量分段收费的办法,已知某户居民每月应缴电费(元)与用电量(度)的函数图象是一条折线(如图),根据图象解答下列问题.(1)求出当时,与之间的函数关系式;(2)若该用户某月用电度,则应缴费多少元?
参考答案一、选择题(每小题3分,共30分)1、A【解析】
根据在同一平面内,垂直于同一直线的两直线平行可得CD∥y轴,再根据平行于y轴上的点的横坐标相同解答.【详解】如图,∵CD⊥x轴,∴CD∥y轴,∵点C的坐标是(1,-3),∴点D的横坐标为1,∵点D在x轴上,∴点D的纵坐标为0,∴点D的坐标为(1,0).故选:A.【点睛】本题考查了坐标与图形性质,比较简单,作出图形更形象直观.2、A【解析】
解:根据网格结构,观察点对应点A、D,点A向左平移5个单位,再向下平移2个单位即可到达点D的位置,所以,平移步骤是:先把△ABC向左平移5个单位,再向下平移2个单位.故选A.3、C【解析】首先判断△BAE、△CAD是等腰三角形,从而得出BA=BE,CA=CD,由△ABC的周长为26,及BC=10,可得DE=6,利用中位线定理可求出PQ.4、C【解析】
以交点为分界,结合图象写出不等式kx<ax+b的解集即可.【详解】函数y=kx和y=ax+b的图象相交于点P(-1,-2).由图可知,不等式kx<ax+b的解集为x<-1.故选C.【点睛】此题主要考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.关键是求出A点坐标以及利用数形结合的思想.5、A【解析】
作EM⊥AF,则AM=FM,利用相似三角形的性质,构建方程求出AM即可解决问题.【详解】解:如图中,作EM⊥AF,则AM=FM,
∵AE=EB=EF,
∴∠EAF=∠EFA,
∵∠CEF=∠CEB,∠BEF=∠EAF+∠EFA,
∴∠BEC=∠EAF,
∴AF∥EC,
在Rt△ECB中,EC=,
∵∠AME=∠B=90°,∠EAM=∠CEB,
∴△CEB∽△EAM,
∴,∴,,
∴AF=2AM=,
故选A.【点睛】本题考查翻折变换、全等三角形的性质、勾股定理、矩形的性质、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考填空题中的压轴题.6、A【解析】
根据函数解析式“上加下减”的原则进行解答即可.【详解】解:由“上加下减”的原则可知,将直线y=3x-1向上平移1个单位长度,得到的一次函数解析式为y=3x-1+1=3x.故选:A.【点睛】本题考查一次函数的图象与几何变换,熟知函数解析式“上加下减”的原则是解答此题的关键.7、D【解析】
根据图像分析不同时间段的水面上升速度,进而可得出答案.【详解】已知一个长方体铁块放置在圆柱形水槽容器内,向容器内按一定的速度均匀注水,60秒后将容器内注满.因为长方体是均匀的,所以初期的图像应是直线,当水越过长方体后,注水需填充的体积变大,因此此时的图像也是直线,但斜率小于初期,综上所述答案选D.【点睛】能够根据条件分析不同时间段的图像是什么形状是解答本题的关键.8、A【解析】
连接OO′,如图,先利用旋转的性质得BO′=BO=8,∠OBO′=60°,再利用△ABC为等边三角形得到BA=BC,∠ABC=60°,则根据旋转的定义可判断△BO′A可以由△BOC绕点B逆时针旋转60°得到;接着证明△BOO′为等边三角形得到∠BOO′=60°,OO′=OB=8;根据旋转的性质得到AO′=OC=10,利用勾股定理的逆定理证明△AOO′为直角三角形,∠AOO′=90°,于是得到∠AOB=150°;最后利用S四边形AOBO′=S△AOO′+S△BOO′可计算出S四边形AOBO′即可判断.【详解】连接OO′,如图,
∵线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,
∴BO′=BO=8,∠OBO′=60°,
∵△ABC为等边三角形,
∴BA=BC,∠ABC=60°,
∴△BO′A可以由△BOC绕点B逆时针旋转60°得到,则①正确;
∵△BOO′为等边三角形,
∴OO′=OB=8,所以②正确;
∵△BO′A可以由△BOC绕点B逆时针旋转60°得到,
∴AO′=OC=10,
在△AOO′中,∵OA=6,OO′=8,AO′=10,
∴OA2+OO′2=AO′2,
∴△AOO′为直角三角形,∠AOO′=90°,
∴∠AOB=∠AOO′+∠BOO′=90°+60°=150°,所以③正确;,故④错误,故选:A.【点睛】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了等边三角形的判定与性质以及勾股定理的逆定理.9、C【解析】
当时,应选择最后一种运算方法进行计算.【详解】当输入时,此时,即.故选C.【点睛】本题主要考查函数与图象10、A【解析】
解:如图,AC⊥BD,E、F、G、H分别为各边的中点,连接点E、F、G、H.
∵E、F、G、H分别为各边的中点,
∴EF∥AC,GH∥AC,EH∥BD,FG∥BD(三角形的中位线平行于第三边),
∴四边形EFGH是平行四边形(两组对边分别平行的四边形是平行四边形),
∵AC⊥BD,EF∥AC,EH∥BD,
∴∠EMO=∠ENO=90°,
∴四边形EMON是矩形(有三个角是直角的四边形是矩形),
∴∠MEN=90°,
∴四边形EFGH是矩形(有一个角是直角的平行四边形是矩形).
故选:A.二、填空题(每小题3分,共24分)11、乙【解析】
直接根据方差的意义求解.【详解】∵S甲2=1.8,S乙2=1.3,1.3<1.8,∴射击成绩比较稳定的是乙,故答案为:乙.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.12、1.【解析】
将原函数解析式变形为一般式,结合一次函数图象在y轴上的截距,即可得出关于b的一元一次方程,解之即可得出结论.【详解】∵y=2(x﹣2)+b=2x+b﹣4,且一次函数y=2(x﹣2)+b的图象在y轴上的截距为5,∴b﹣4=5,解得:b=1.故答案为:1.【点睛】本题考查了一次函数图象上点的坐标特征,牢记截距的定义是解题的关键.13、8.4.【解析】
过点C作CG⊥AB的延长线于点G,设AE=x,由于▱ABCD沿EF对折可得出AE=CE=x,再求出∠BCG=30°,BG=BC=3,由勾股定理得到,则EG=EB+BG=12-x+3=15-x,在△CEG中,利用勾股定理列出方程即可求出x的值.【详解】解:过点C作CG⊥AB的延长线于点G,
∵▱ABCD沿EF对折,∴AE=CE设AE=x,则CE=x,EB=12-x,∵AD=6,∠A=60°,∴BC=6,∠CBG=60°,∴∠BCG=30°,∴BG=BC=3,在△BCG中,由勾股定理可得:∴EG=EB+BG=12-x+3=15-x在△CEG中,由勾股定理可得:解得:故答案为:8.4【点睛】本题考查平行四边形的综合问题,解题的关键是证明△D′CF≌△ECB,然后利用勾股定理列出方程,本题属于中等题型.14、八(或8)【解析】分析:根据正多边形的每一个内角为,求出正多边形的每一个外角,根据多边形的外角和,即可求出正多边形的边数.详解:根据正多边形的每一个内角为,正多边形的每一个外角为:多边形的边数为:故答案为八.点睛:考查多边形的外角和,掌握多边形的外角和是解题的关键.15、2;x<﹣2或0<x<2.【解析】
(2)将A点坐标分别代入两个解析式,可求k;(2)由两个解析式组成方程组,求出交点,通过图象可得解.【详解】(2)∵函数y2的图象与直线y2=x+2交于点A(2,a),∴a=2+2=2,∴A(2,2),∴2,∴k=2,故答案为:2;(2)∵函数y2的图象与直线y2=x+2相交,∴x+2,∴x2=2,x2=﹣2,∵y2>y2,∴x<﹣2或0<x<2,故答案为:x<﹣2或0<x<2.【点睛】本题考查了反比例函数与一次函数的交点问题,待定系数法,关键是熟练利用图象表达意义解决问题.16、上1【解析】
根据“上加下减”的平移规律解答即可.【详解】解:将一次函数y=3x-1的图象沿y轴向上平移1个单位后,得到的图象对应的函数关系式为y=3x-1+1,即y=3x,该函数图象经过原点.故答案为上,1.【点睛】此题主要考查了一次函数图象与几何变换,求直线平移后的解析式时要注意直线平移时k的值不变,只有b发生变化.解析式变化的规律是:左加右减,上加下减.17、【解析】
根据已知条件求出,,得到m-n与m+n,即可求出答案.【详解】∵,∴,∴,∵m>n>0,∴,,∴,故答案为:.【点睛】此题考查利用算术平方根的性质化简,平反差公式的运用,熟记公式是解题的关键.18、【解析】
根据一元一次方程无解,则m+1=0,即可解答.【详解】解:∵关于的方程无解,∴m+1=0,∴m=−1,故答案为m=−1.【点睛】本题考查了一元一次方程的解,根据题意得出关于m的方程是解题关键.三、解答题(共66分)19、(1)详见解析;(2)①4﹣2;②AF=BH,详见解析【解析】
(1)由“ASA”可得△BOE≌△DOF,可得DF=BE,可得结论;(2)①由等腰三角形的性质可得EN=CN=2,由勾股定理可求DN,由等腰三角形的性质可求BN的长,即可求解;②如图,过点H作HM⊥BC于点M,由“AAS”可证△HMC≌△CND,可得HM=CN,由等腰直角三角形的性质可得BH=HM,即可得结论.【详解】(1)证明:∵平行四边形ABCD中,点O是对角线BD中点,∴AD∥BC,BO=DO,∴∠ADB=∠CBD,且∠DOF=∠BOE,BO=DO,∴△BOE≌△DOF(ASA)∴DF=BE,且DF∥BE,∴四边形BEDF是平行四边形;(2)①如图2,过点D作DN⊥EC于点N,∵DE=DC=6,DN⊥EC,∴EN=CN=2,∴DN===4,∵∠DBC=45°,DN⊥BC,∴∠DBC=∠BDN=45°,∴DN=BN=4,∴BE=BN﹣EN=4﹣2;故答案为:BE=4﹣2.②AF=BH,理由如下:如图,过点H作HM⊥BC于点M,∵DN⊥EC,CG⊥DE,∴∠CEG+∠ECG=90°,∠DEN+∠EDN=90°,∴∠EDN=∠ECG,∵DE=DC,DN⊥EC,∴∠EDN=∠CDN,EC=2CN,∴∠ECG=∠CDN,∵∠DHC=∠DBC+∠BCH=45°+∠BCH,∠CDB=∠BDN+∠CDN=45°+∠CDN,∴∠CDB=∠DHC,∴CD=CH,且∠HMC=∠DNC=90°,∠ECG=∠CDN,∴△HMC≌△CND(AAS)∴HM=CN,∵HM⊥BC,∠DBC=45°,∴∠BHM=∠DBC=45°,∴BM=HM,∴BH=HM,∵AD=BC,DF=BE,∴AF=EC=2CN,∴AF=2HM=BH.故答案为:AF=BH.【点睛】本题是四边形综合题,考查了平行四边形的性质,全等三角形的判定和性质,勾股定理,等腰直角三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.20、变短了1.5米.【解析】
如图,由于AC∥BD∥OP,故有△MAC∽△MOP,△NBD∽△NOP即可由相似三角形的性质求解.【详解】解:∵∠MAC=∠MOP=90°,∠AMC=∠OMP,∴△MAC∽△MOP.∴,即,解得,MA=5米;同理,由△NBD∽△NOP,可求得NB=1.5米,∴小明的身影变短了5﹣1.5=1.5米.【点睛】本题考查相似三角形的应用,掌握相似三角形的判定和性质正确推理计算是解题关键.21、答案见解析【解析】试题分析:(1)根据题意制作频数分布表即可;
(2)根据题意绘制频数直方图即可;
(3)根据题意即可得到结论.试题解析:(1)将样本数据适当分组,制作频数分布表:分组[50,59][60,69][70,79][80,89][90,100]频数5101564故答案为:[50,59],[60,69],[70,79],[80,89],[90,100],5,10,15,6,4;(2)根据频数分布表,绘制频数直方图:(3)从图可以看出,这40名学生的成绩都分布在50∽100分范围内,分数在70﹣80之间的人数最多.22、(1)购买一个甲种足球需要50元,购进一个乙种足球需要70元;(2)这所学校最多可购买25个乙种足球.【解析】
(1)设购买一个甲种足球需要x元,则购进一个乙种足球需要元,根据数量=总价÷单价结合3000元购买的甲种足球数量是2100元购买的乙种足球数量的2倍,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设这所学校可购买m个乙种足球,则购买个甲种足球,根据总价=单价×数量结合总费用不超过2950元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.【详解】(1)设购买一个甲种足球需要x元,则购进一个乙种足球需要元依题意得:解得:经检验,是所列分式方程的解,且符合题意此时,答:购买一个甲种足球需要50元,购进一个乙种足球需要70元;(2)设这所学校可购买m个乙种足球,则购买个甲种足球,依题意得:解得:答:这所学校最多可购买25个乙种足球.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.23、(1)详见解析;(2)【解析】
(1)先证明AC=BD,再证明平行四边形ABCD是矩形即可得到答案;(2)证明△AOD为等边三角形,再运用勾股定理求解即可.【详解】证明:在平行四边形中,,又,四边形是矩形解:四边形是矩形.,又是等边三角形,,在中,【点睛】本题考查了矩形的判定和性质,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 江西省吉安市遂川县2024年中考模拟数学试题附答案
- 部编小学语文-一年级下全册教案
- 科学育种技术提升作物光合作用效率
- 园林景观工程施工组织设计技术标
- 高一化学二专题化学科学与人类文明练习
- 2024届北京海淀外国语高三(最后冲刺)化学试卷含解析
- 2024届江苏盐城市时杨中学高考临考冲刺化学试卷含解析
- 2024高中地理第2章区域生态环境建设第1节第2课时荒漠化的人为原因和防治学案新人教版必修3
- 2024高中物理第三章相互作用5力的分解课后作业含解析新人教版必修1
- 2024高中语文第7单元韩非子蚜第1课郑人有且买履者练习含解析新人教版选修先秦诸子蚜
- 2025年度爱读书学长策划的读书讲座系列合同2篇
- 广东省深圳市宝安区2024-2025学年八年级英语上学期1月期末英语试卷(含答案)
- 《设备房管理标准》课件
- 《交通运输行业安全生产监督检查工作指南 第2部分:道路运输》
- 初二生物期末质量分析及整改措施
- 苏州工业园区ESG发展白皮书
- 《边缘计算单元与交通信号控制机的数据通信标准编制说明》
- 《安防摄像机智能化指标要求和评估方法》
- 驾驶证学法减分(学法免分)试题和答案(50题完整版)1650
- 高低压配电柜-福建宁德核电站投标书
- 干燥综合症护理课件
评论
0/150
提交评论