




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省庆云县联考2024年八年级下册数学期末预测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,在矩形ABCD中,AB=2,AD=3,E是BC边上一点,将ΔABE沿AE折叠,使点B落在点B'处,连接CB',则CB'的最小值是()A.13-2 B.13+2 C.2.下列计算正确的是()A.=﹣4 B.()2=4 C.+= D.÷=33.在▱ABCD中,AC平分∠DAB,AB=3,则▱ABCD的周长为()A.6 B.9 C.12 D.154.若关于x的一元二次方程(k-1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是()A.k<5 B.k<5,且k≠1 C.k≤5,且k≠1 D.k>55.如图圆柱的底面周长是,圆柱的高为,为圆柱上底面的直径,一只蚂蚁如果沿着圆柱的侧面从下底面点处爬到上底面点处,那么它爬行的最短路程为()A. B. C. D.6.如图,等腰直角三角形ABC的直角边AB的长为6cm,将△ABC绕点A逆时针旋转15°后得到△AB′C′,AC与B′C′相交于点H,则图中△AHC′的面积等于()A.12﹣63 B.14﹣63 C.18﹣63 D.18+637.如图,在框中解分式方程的4个步骤中,根据等式基本性质的是()A.①③ B.①② C.②④ D.③④8.在同一平面直角坐标系内,将函数y=2(x+1)2﹣1的图象沿x轴方向向右平移2个单位长度后再沿y轴向下平移1个单位长度,得到图象的顶点坐标是()A.(﹣1,1) B.(1,﹣2) C.(2,﹣2) D.(1,﹣1)9.下列式子从左至右变形不正确的是()A.= B.=C.=- D.=10.已知a是方程x2-3x-1=0的一个根,则代数式A.6 B.5 C.12+213 D.11.如图,图中的四边形都是正方形,三角形都是直角三角形,其中正方形的面积分别记为A,B,C,D,则它们之间的关系为()A.A+B=C+D B.A+C=B+DC.A+D=B+C D.以上都不对12.如图,直线与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,当PC+PD最小时,点P的坐标为()A.(-4,0) B.(-1,0) C.(-2,0) D.(-3,0)二、填空题(每题4分,共24分)13.为了改善生态环境,防止水土流失,红旗村计划在荒坡上种树960棵,由于青年志愿者支援,实际每天种树的棵数是原计划的2倍,结果提前4天完成任务,则原计划每天种树的棵数是________.14.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的面积为49,则正方形A、B、C、D的面积之和为_____.15.如图,在矩形ABCD中,DE⊥AC,∠CDE=2∠ADE,那么∠BDC的度数是________.16.点P(m-1,2m+3)关于y轴对称的点在第一象限,则m的取值范围是_______.17.如图,把△ABC绕点C按顺时针方向旋转35°,得到△A’B’C,A’B’交AC于点D,若∠A’DC=90°,则∠A=°.18.如图,在矩形ABCD中,AC为对角线,点E为BC上一点,连接AE,若∠CAD=2∠BAE,CD=CE=9,则AE的长为_____________.三、解答题(共78分)19.(8分)如图,四边形中,,平分,交于.(1)求证:四边形是菱形;(2)若点是的中点,试判断的形状,并说明理由.20.(8分)为了解某校九年级学生立定跳远水平,随机抽取该年级名学生进行测试,并把测试成绩(单位:)绘制成不完整的频数分布表和频数分布直方图.请根据图表中所提供的信息,完成下列问题(1)表中=,=;(2)请把频数分布直方图补充完整;(3)跳远成绩大于等于为优秀,若该校九年级共有名学生,估计该年级学生立定跳远成绩优秀的学生有多少人?21.(8分)某学校开展课外体育活动,决定开设A:篮球、B:乒乓球、C:武术、D:跑步四种活动项目为了解学生最喜欢哪一种活动项目每人只选取一种随机抽取了m名学生进行调查,并将调查结果绘成如下统计图,请你结合图中信息解答下列问题:______;在扇形统计图中“乒乓球”所对应扇形的圆心角的度数为______;请把图的条形统计图补充完整;若该校有学生1200人,请你估计该校最喜欢武术的学生人数约是多少?22.(10分)在平面直角坐标系中,已知点A、B的坐标分别为(-,0)、(0,-1),把点A绕坐标原点O顺时针旋转135°得点C,若点C在反比例函数y=的图象上.(1)求反比例函数的表达式;(2)若点D在y轴上,点E在反比例函数y=的图象上,且以点A、B、D、E为顶点的四边形是平行四边形.请画出满足题意的示意图并在示意图的下方直接写出相应的点D、E的坐标.23.(10分)随着通讯技术的迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷每人必选且只选一种,在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次统计共抽查了________名学生;在扇形统计图中,表示“”的扇形所占百分数为__________;(2)将条形统计图补充完整;(3)该校共有名学生,请估计该校最喜欢用“微信”进行沟通的学生有多少名?(4)某天甲、乙两名同学都想从“微信”、“”、“电话”三种沟通方式中选一种方式与对方联系,请用列表或画树状图的方法求出甲、乙两名同学恰好选择同一种沟通方式的概率.24.(10分)某校要设计一座高的雕像(如图),使雕像的点(肚脐)为线段(全身)的黄金分割点,上部(肚脐以上)与下部(肚脐以下)的高度比为黄金比.则雕像下部设计的高度应该为______(结果精确到)米.(,结果精确到).25.(12分)已知一次函数的图象经过点A(2,1),B(﹣1,﹣3).(1)求此一次函数的解析式;(2)求此一次函数的图象与x轴、y轴的交点坐标;(3)求此一次函数的图象与两坐标轴所围成的三角形面积.26.如图,在四边形ABCD中,AD∥CB,AC、BD相交于点E,E为BD中点,延长CD到点F,使DF=CD.(1)求证:AE=CE;(2)求证:四边形ABDF为平行四边形;(3)若CD=1,AF=2,∠BEC=2∠F,直接写出四边形ABDF的面积.
参考答案一、选择题(每题4分,共48分)1、A【解析】
由矩形的性质得出∠B=90°,BC=AD=3,由折叠的性质得:AB'=AB=1,当A、B'、C三点共线时,CB'的值最小,由勾股定理得出AC=AB2+BC2=【详解】解:∵四边形ABCD是矩形,
∴∠B=90°,BC=AD=3,
由折叠的性质得:AB'=AB=1,
当A、B'、C三点共线时,CB'的值最小,
此时AC=AB2+BC2=22+3【点睛】本题考查了翻折变换的性质、矩形的性质、勾股定理等知识;熟练掌握翻折变换的性质和勾股定理是解题的关键.2、D【解析】
根据二次根式的性质对A、B进行判断;根据二次根式的加减法对C进行判断;根据二次根式的除法法则对D进行判断.【详解】A、原式=|﹣4|=4,所以A选项错误;B、原式=2,所以B选项错误;C、与不能合并,所以C选项错误;D、原式==3,所以D选项正确.故选D.【点睛】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.3、C【解析】
首先证得△ADC≌△ABC,由全等三角形的性质易得AD=AB,由菱形的判定定理得▱ABCD为菱形,由菱形的性质得其周长.【详解】解:如图:∵AC平分∠DAB,∴∠DAC=∠BAC.∵四边形ABCD为平行四边形,∴∠B=∠D.在△ADC和△ABC中,∠B=∠D∠BAC=∠DAC∴△ADC≌△ABC,∴AD=AB,∴四边形ABCD为菱形,∴AD=AB=BC=CD=3,∴▱ABCD的周长为:3×4=1.故选:C【点睛】本题主要考查了全等三角形的判定及菱形的判定及性质,找出判定菱形的条件是解答此题的关键.4、B【解析】试题解析:∵关于x的一元二次方程方程有两个不相等的实数根,∴,即,解得:k<5且k≠1.故选B.5、C【解析】
把圆柱沿母线AC剪开后展开,点B展开后的对应点为B′,利用两点之间线段最短可判断蚂蚁爬行的最短路径为AB′,如图,由于AC=12,CB′=5,然后利用勾股定理计算出AB′即可.【详解】解:把圆柱沿母线AC剪开后展开,点B展开后的对应点为B′,则蚂蚁爬行的最短路径为AB′,如图,AC=12,CB′=5,
在Rt△ACB′,所以它爬行的最短路程为13cm.
故选:C.【点睛】本题考查了平面展开-最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.6、C【解析】
如图,首先运用旋转变换的性质证明∠B'AH=30°,此为解决问题的关键性结论;运用直角三角形的边角关系求出B'H的长度,进而求出△AB'H的面积,即可解决问题.【详解】如图,由题意得:∠CAC'=15°,∴∠B'AH=45°﹣15°=30°,∴B'H=6÷3=6×33=23,∴S△AB'H=12×6×23=63故选C.【点睛】本题考查了旋转变换的性质、勾股定理、三角形的面积公式等几何知识点及其应用问题;牢固掌握旋转变换的性质、勾股定理、三角形的面积公式等几何知识点是灵活运用、解题的基础和关键.7、A【解析】
根据等式的性质1,等式的两边都加或减同一个整式,结果不变,根据等式的性质1,等式的两边都乘或除以同一个不为零的整式,结果不变,可得答案.【详解】①根据等式的性质1,等式的两边都乘同一个不为零的整式x﹣1,结果不变;②根据去括号法则;③根据等式的性质1,等式的两边都加同一个整式3﹣x,结果不变;④根据合并同类项法则.根据等式基本性质的是①③.故选A.【点睛】本题考查了等式的性质,利用了等式的性质1,等式的性质1.8、B【解析】
先求出原函数的顶点坐标,再按照要求移动即可.【详解】解:函数y=2(x+1)2﹣1的顶点坐标为(﹣1,﹣1),点(﹣1,﹣1)沿x轴方向向右平移2个单位长度后再沿y轴向下平移1个单位长度后对应点的坐标为(1,﹣2),即平移后抛物线的顶点坐标是(1,﹣2).故选:B.【点睛】本题考查函数的相关图像性质,能够求出顶点坐标是解题关键.9、A【解析】
根据分式的基本性质逐项判断即得答案.【详解】解:A、由分式的基本性质可知:≠,所以本选项符合题意;B、=,变形正确,所以本选项不符合题意;C、=-,变形正确,所以本选项不符合题意;D、,变形正确,所以本选项不符合题意.故选:A.【点睛】本题考查了分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.10、B【解析】
根据方程的根的定义,把x=a代入方程求出a2-3a的值,然后整体代入代数式进行计算即可得解.【详解】解:∵a是方程x2-3x-1=0的一个根,∴a2-3a-1=0,整理得,a2-3a=1,∴2a2-6a+3=2(a2-3a)+3=2×1+3=5,故选:B.【点睛】本题考查了一元二次方程的解,利用整体思想求出a2-3a的值,然后整体代入是解题的关键.11、A【解析】分析:根据勾股定理和正方形的面积公式可以得到A+B=C+D.详解:如图,∵a2+b2=e2,c2+d2=e2,∴a2+b2=c2+d2,∴A+B=C+D.故选A.点睛:本题考查了勾股定理.勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.12、C【解析】
根据一次函数解析式求出点A、B的坐标,再由中点坐标公式求出点C、D的坐标并根据三角形中位线定理得出CD//x轴,根据对称的性质找出点D′的坐标,根据三角形中位线定理即可得出点P为线段CD′的中点,由此即可得出点P的坐标.【详解】解:连接CD,作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示在中,当y=0时,,解得x=-8,A点坐标为,当x=0时,,B点坐标为,∵点C、D分别为线段AB、OB的中点,∴点C(-4,3),点D(0,3),CD∥x轴,∵点D′和点D关于x轴对称,
∴点D′的坐标为(0,-3),点O为线段DD′的中点.
又∵OP∥CD,
∴OP为△CD′D的中位线,点P为线段CD′的中点,∴点P的坐标为,故选:C.【点睛】本题考查轴对称——最短路径问题,一次函数图象与坐标轴交点问题,三角形中位线定理.能根据轴对称的性质定理找出PC+PD值最小时点P的位置是解题的关键.二、填空题(每题4分,共24分)13、120【解析】【分析】设原计划每天种树x棵,则实际每天种树2x棵,根据题意列出分式方程,解之即可.【详解】设原计划每天种树x棵,则实际每天种树2x棵,依题可得:,解得:x=120,经检验x=120是原分式方程的根,故答案为:120.【点睛】本题考查了列分式方程解应用题,弄清题意,找出等量关系是解题的关键.14、1【解析】
根据勾股定理计算即可.【详解】解:最大的正方形的面积为1,由勾股定理得,正方形E、F的面积之和为1,∴正方形A、B、C、D的面积之和为1,故答案为1.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.15、30°【解析】分析:由矩形的性质得出∠ADC=90°,OA=OD,得出∠ODA=∠DAE,由已知条件求出∠ADE,得出∠DAE、∠ODA,即可得出∠BDC的度数.详解:∵四边形ABCD是矩形,∴∠ADC=90°,OA=OD,∴∠ODA=∠DAE,∵∠CDE=2∠ADE,∴∠ADE=90°÷3=30°,∵DE⊥AC,∴∠AED=90°,∴∠DAE=60°,∴∠ODA=60°,∴∠BDC=90°-60°=30°;故答案为:30°.点睛:本题考查了矩形的性质、等腰三角形的判定与性质;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.16、-1.5<m<1【解析】
首先根据题意判断出P点在第二象限,再根据第二象限内点的坐标符号(-,+),可得到不等式组,然后求解不等式组即可得出m的取值范围.【详解】解:∵P(m-1,2m+3)关于y轴对称的点在第一象限,
∴P点在第二象限,
解得:-1.5<m<1,
故答案为:-1.5<m<1.【点睛】本题考查关于y轴对称的点的坐标特点,各象限内点的坐标符号,解一元一次不等式组.解答本题的关键是判断出P点所在象限并据此列出不等式组.17、55.【解析】
试题分析:∵把△ABC绕点C按顺时针方向旋转35°,得到△A’B’C∴∠ACA’=35°,∠A=∠A’,.∵∠A’DC=90°,∴∠A’=55°.∴∠A=55°.考点:1.旋转的性质;2.直角三角形两锐角的关系.18、【解析】
如图,作AM平分∠DAC,交CD于点M,过点M作MN⊥AC于点N,证明△ABE∽△ADM,根据相似三角形的性质可得AB:AD=BE:DM,证明△ADM≌△ANM,根据全等三角形的性质可得AN=AD,MN=DM,设BE=m,DM=n,则AN=AD=BC=9+m,MN=n,CM=9-n,由此可得,即9n=m(9+m),根据勾股定理可得AC=,从而可得CN=-(9+m),在Rt△CMN中,根据勾股定理则可得(9-n)2=n2+[-(9+m)]2,继而由9n=m(9+m),可得-2m(9+m)=2(9+m)2-2(9+m),化简得=9+2m,两边同时平方后整理得m2+6m-27=0,求得m=3或m=-9(舍去),再根据勾股定理即可求得答案.【详解】如图,作AM平分∠DAC,交CD于点M,过点M作MN⊥AC于点N,则∠CAD=2∠DAM=2∠NAM,∠ANM=∠MNC=90°,∵∠CAD=2∠BAE,∴∠BAE=∠DAM,∵四边形ABCD是矩形,∴AB=CD=9,∠B=∠D=90°,AD=BC,∴△ABE∽△ADM,∴AB:AD=BE:DM,又∵AM=AM,∴△ADM≌△ANM,∴AN=AD,MN=DM,设BE=m,DM=n,则AN=AD=BC=CE+BE=9+m,MN=n,CM=CD-DM=9-n,∵AB:AD=BE:DM,∴,即9n=m(9+m),∵∠B=90°,∴AC=,∴CN=AC-AN=-(9+m),在Rt△CMN中,CM2=CN2+MN2,即(9-n)2=n2+[-(9+m)]2,∴81-18n+n2=n2+92+(9+m)2-2(9+m)+(9+m)2,又∵9n=m(9+m),∴81-2m(9+m)+n2=n2+92+(9+m)2-2(9+m)+(9+m)2,即-2m(9+m)=2(9+m)2-2(9+m),∴=9+2m,∴92+(9+m)2=(9+2m)2,即m2+6m-27=0,解得m=3或m=-9(舍去),∴AE=,故答案为:.【点睛】本题考查了矩形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理的应用等,综合性较强,难度较大,正确添加辅助线,熟练掌握和灵活运用相关知识,准确计算是解题的关键.三、解答题(共78分)19、(1)详见解析;(2)是直角三角形,理由详见解析.【解析】
(1)利用两组对边平行可得该四边形是平行四边形,进而证明一组邻边相等可得该四边形为菱形;(2)利用菱形的邻边相等的性质及等腰三角形的性质可得两组角相等,进而证明∠ACB为直角即可.【详解】(1)∵AB∥CD,CE∥AD,∴四边形AECD为平行四边形,∠2=∠3,又∵AC平分∠BAD,∴∠1=∠2,∴∠1=∠3,∴AD=DC,∴平行四边形AECD是菱形;(2)直角三角形,理由如下:∵四边形AECD是菱形,∴AE=EC,∴∠2=∠4,∵AE=EB,∴EB=EC,∴∠5=∠B,又因为三角形内角和为180°,∴∠2+∠4+∠5+∠B=180°,∴∠ACB=∠4+∠5=90°,∴△ACB为直角三角形.【点睛】本题考查了平行四边形的判定,菱形的判定与性质,直角三角形的判定,熟练掌握和灵活运用相关知识是解题的关键.注意数形结合思想的运用.20、(1)8,20(2)见解析(3)330人【解析】
(1)根据频数分布直方图可知a的值,然后根据题目中随机抽取该年级50名学生进行测试,可以求得b的值;
(2)根据(1)中b的值可以将频数分布直方图补充完整;
(3)根据频数分布表中的数据,可以算出该年级学生立定跳远成绩优秀的学生有多少人.【详解】(1)由频数分布直方图可知,a=8,
b=50-8-12-10=20,
故答案为:8,20;
(2)由(1)知,b=20,
补全的频数分布直方图如图所示;(3)550×=330(人),
答:该年级学生立定跳远成绩优秀的学生有330人.【点睛】本题考查频数分布表、频数分布直方图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.21、(1)50;(2)108°;(3)见解析;(4)1.【解析】
(1)由B项目人数及其所占百分比可得总人数m;(2)用360°乘以B项目对应百分比可得;(3)根据各项目人数之和为50求得A项目人数即可补全图形;(4)总人数乘以样本中C项目人数所占比例即可得.【详解】,故答案为50;在扇形统计图中“乒乓球”所对应扇形的圆心角的度数为,故答案为;项目人数为人,补全图形如下:估计该校最喜欢武术的学生人数约是人.【点睛】本题考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22、(1)y=;(2)示意图见解析,E(-,-),D(0,-1-)或E(-,-),D(0,-1+)或E,D【解析】
(1)根据旋转和直角三角形的边角关系可以求出点C的坐标,进而确定反比例函数的关系式;(2)分两种情况进行讨论解答,①点E在第三象限,由题意可得E的横坐标与点A的相同,将A的横坐标代入反比例函数的关系式,可求出纵坐标,得到E的坐标,进而得到AE的长,也是BD的长,因此D在B的上方和下方,即可求出点D的坐标,②点E在第一象限,由三角形全等,得到E的横坐标,代入求出纵坐标,确定E的坐标,进而求出点D的坐标.【详解】(1)由旋转得:OC=OA=,∠AOC=135°,过点C作CM⊥y轴,垂足为M,则∠COM=135°-90°=45°,在Rt△OMC中,∠COM=45°,OC=,∴OM=CM=1,∴点C(1,1),代入y=得:k=1,∴反比例函数的关系式为:y=,答:反比例函数的关系式为:y=(2)①当点E在第三象限反比例函数的图象上,如图1,图2,∵点D在y轴上,AEDB是平行四边形,∴AE∥DB,AE=BD,AE⊥OA,当x=-时,y==-,∴E(-,-)∵B(0,-1),BD=AE=,当点D在B的下方时,∴D(0,-1-)当点D在B的上方时,∴D(0,-1+),②当点E在第一象限反比例函数的图象上时,如图3,过点E作EN⊥y轴,垂足为N,∵ABED是平行四边形,∴AB=DE,AB=DE,∴∠ABO=∠EDO,∴△AOB≌△END
(AAS),∴EN=OA=,DN=OB=1,当x=时,代入y=得:y=,∴E(,),∴ON=,OD=ON+DN=1+,∴D(0,1+)【点睛】考查反比例函数图象上点的坐标特征、平行四边形的性质、以及全等三角形的判定和性质等知识,画出不同情况下的图形是解决问题的关键.23、(1)100、30%;(2)见详解;(3)800人;(4)【解析】
(1)根据喜欢电话沟通的人数与百分比即可求出共抽查人数,求出使用QQ的百分比即可求出QQ的扇形圆心角度数.
(2)计算出短信与微信的人数即可补全统计图.
(3)用样本中喜欢用微信进行沟通的百分比来估计2500名学生中喜欢用微信进行沟通的人数即可求出答案;
(4)列出树状图分别求出所有情况以及甲、乙两名同学恰好选中同一种沟通方式的情况后,利用概率公式即可求出甲、乙两名同学恰好选中同一种沟通方式的概率.【详解】解:(1)喜欢用电话沟通的人数为20,所占百分比为20%,
∴此次共抽查了:20÷20%=100人,
喜欢用QQ沟通所占比例为:,
故答案为:100、30%;(2)喜欢用短信的人数为:100×5%=5人,
喜欢用微信的人数为:100-20-5-30-5=40人,
补充图形,如图所示:
(3)喜欢用微信沟通所占百分比为:×100%=40%,
∴该校共有2000名学生,请估计该校最喜欢用“微信”进行沟通的学生有:2000×40%=800人;
(4)画出树状图,如图所示
所有情况共有9种情况,其中甲、乙两名同学恰好选择同一种沟通方式的共有3种情况,
故甲、乙两名同学恰好选中同一种沟通方式的概率为:.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24、【解析】
设雕像下部的设计高度为xm,那么雕像上部的高度为(2-x)m.根据雕像上部与下部的高度
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 宴会部维修管理制度
- 家电维修队管理制度
- 应急医疗包管理制度
- 当当网公司管理制度
- 影视剧公司管理制度
- 心电图规培管理制度
- 快递站各项管理制度
- 怎样对租户管理制度
- 患者安全与管理制度
- 成品库班长管理制度
- 2025年高考真题-语文(全国一卷) 无答案
- 兵团开放大学2025年春季《公共关系学》终结考试答案
- 2025年中考语文押题作文范文10篇
- 拆迁名额转让协议书
- 2025年初中学业水平考试地理试卷(地理学科核心素养)含答案解析
- 《重大电力安全隐患判定标准(试行)》解读与培训
- 《人工智能基础与应用》课件-实训任务18 构建智能体
- 人工智能笔试题及答案
- 2025-2030进口肉类市场发展分析及行业投资战略研究报告
- 山西省临汾市侯马市部分学校2025年中考二模化学试题(原卷版+解析版)
- 海洋牧场建设项目可行性研究报告
评论
0/150
提交评论