




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省常德市2024年八年级数学第二学期期末预测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.函数与在同一坐标系内的图像可能是()A. B.C. D.2.已知关于x的方程x2﹣kx﹣6=0的一个根为x=3,则实数k的值为A.1 B.﹣1 C.2 D.﹣23.下列式子中,属于最简二次根式的是:A. B. C. D.4.如图,是由两个大小完全相同的圆柱形容器在中间连通而成的可以盛水的器具,现匀速地向容器A中注水,则容器A中水面上升的高度h随时间t变化的大致图象是()A. B.C. D.5.若分式的值为0,则x的值是()A.0 B.1 C.0或1 D.0或1或-16.直角三角形的两条直角边长分别为a和b,斜边长为c,已知c=13,b=5,则a=()A.1 B.5 C.12 D.257.若分式(x≠0,y≠0)中x,y同时扩大3倍,则分式的值()A.扩大3倍 B.缩小3倍 C.改变 D.不改变8.如图,四边形是菱形,经过点、、,与相交于点,连接、.若,则的度数为()A. B. C. D.9.已知一次函数y=kx+b(k≠0)图象过点(0,2),且与两坐标轴围成的三角形面积为2,则一次函数的解析式为()A.y=x+2 B.y=﹣x+2 C.y=x+2或y=﹣x+2 D.y=-x+2或y=x-210.如图,在▱ABCD中,对角线AC与BD交于点O,若增加一个条件,使▱ABCD成为菱形,下列给出的条件正确的是()A.AB=AD B.AC=BD C.∠ABC=90° D.∠ABC=∠ADC二、填空题(每小题3分,共24分)11.因式分解:____.12.如图,与穿过正六边形,且,则的度数为______.13.一张矩形纸片ABCD,已知,.小明按所给图步骤折叠纸片,则线段DG长为______.14.点A(-1,y1),B(2,y2)均在直线y=-2x+b的图象上,则y1___________y2(选填“>”<”=”)15.若反比例函数的图象经过点,则的图像在_______象限.16.如图,在ABCD中,对角线AC,BD相交于点O,若再增加一个条件,就可得出ABCD是菱形,则你添加的条件是___________.17.若一个多边形的内角和是900º,则这个多边形是边形.18.若一个三角形的两边长为和,第三边长是方程的根,则这个三角形的周长是____.三、解答题(共66分)19.(10分)如图是某港口在某天从0时到12时的水位情况变化曲线.(1)在这一问题中,自变量是什么?(2)大约在什么时间水位最深,最深是多少?(3)大约在什么时间段水位是随着时间推移不断上涨的?20.(6分)小强想利用树影测树高,他在某一时刻测得直立的标杆长0.8m,其影长为1m,同时测树影时因树靠近某建筑物,影子不全落在地上,有一部分落在墙上如图,若此时树在地面上的影长为5.5m,在墙上的影长为1.5m,求树高21.(6分)(1)分解因式:x(x﹣y)﹣y(y﹣x)(2)解不等式组,并把它的解集在数轴上表示出来.22.(8分)春节前夕,某商店根据市场调查,用2000元购进第一批盒装花,上市后很快售完,接着又用4200元购进第二批这种盒装花.已知第二批所购的盒数是第一批所购花盒数的3倍,且每盒花的进价比第一批的进价少6元.求第一批盒装花每盒的进价.23.(8分)某网店销售单价分别为元/筒、元/筒的甲、乙两种羽毛球.根据消费者需求,该网店决定用不超过元购进甲、乙两种羽毛球共简.且甲种羽毛球的数量大于乙种羽毛球数量的.已知甲、乙两种羽毛球的进价分别为元/筒、元/筒。若设购进甲种羽毛球简.(1)该网店共有几种进货方案?(2)若所购进羽毛球均可全部售出,求该网店所获利润(元)与甲种羽毛球进货量(简)之间的函数关系式,并求利润的最大值24.(8分)某学校组织330学生集体外出活动,计划租用甲、乙两种大客车共8辆,已知甲种客车载客量为45人/辆,租金为400元/辆;乙种客车载客量为30人/辆,租金为280元/辆,设租用甲种客车x辆.(1)用含x的式子填写下表:车辆数(辆)载客量(人)租金(元)甲种客车x45x400x乙种客车___________________________(2)给出最节省费用的租车方案,并求出最低费用.25.(10分)解下列各题:(1)计算:(2)解方程:(x+1)(x-1)=4x-126.(10分)如图,△ABC是以BC为底的等腰三角形,AD是边BC上的高,点E、F分别是AB、AC的中点.(1)求证:四边形AEDF是菱形;(2)如果四边形AEDF的周长为12,两条对角线的和等于7,求四边形AEDF的面积S.
参考答案一、选择题(每小题3分,共30分)1、B【解析】
分k>0与k<0两种情况分别进行讨论即可得.【详解】当k>0时,y=kx-1的图象过一、三、四象限,的图象位于第一、三象限,观察可知选项B符合题意;当k<0时,y=kx-1的图象过二、三、四象限,的图象位于第二、四象限,观察可知没有选项符合题意,故选B.【点睛】本题考查了反比例函数图象与一次函数图象的结合,熟练掌握反比例函数的图象与性质以及一次函数的图象与性质是解题的关键.2、A【解析】试题分析:一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立,因此,∵x=3是原方程的根,∴将x=3代入原方程,即32﹣3k﹣6=0成立,解得k=1.故选A.3、A【解析】
根据最简二次根式的定义对各选项进行判断.【详解】解:=3,=2,=而为最简二次根式.
故选:A.【点睛】本题考查最简二次根式:熟练掌握最简二次根式满足的条件(被开方数的因数是整数或字母,因式是整式;被开方数中不含有可化为平方数或平方式的因数或因式).4、C【解析】
根据题意可以分析出各个过程中A中水面上的快慢,从而可以解答本题.【详解】由题意和图形可知,从开始到水面到达A和B连通的地方这个过程中,A中水面上升比较快,从水面到达A和B连通的地方到B中水面和A中水面持平这个过程中,A中水面的高度不变,从B中水面和A中水面持平到最后两个容器中水面上升到最高这个过程中,A中水面上升比较慢,故选C.【点睛】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.5、A【解析】
分式的值为0的条件是:分子为0,分母不为0,两个条件需同时具备,缺一不可.据此可以解答本题.【详解】∵=0,∴x−x=0,即x(x−1)=0,x=0或x=1,又∵x−1≠0,∴x≠±1,综上得,x=0.故选A.【点睛】此题考查分式的值为零的条件,解题关键在于掌握运算法则6、C【解析】
根据勾股定理计算即可.【详解】由勾股定理得,a=,故选C.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.7、D【解析】
可将式中的x,y都用3x,3y来表示,再将化简后的式子与原式对比,即可得出答案.【详解】将原式中的x,y分别用3x,3y表示.故选D.【点睛】考查的是对分式的性质的理解,分式中元素扩大或缩小N倍,只要将原数乘以或除以N,再代入原式求解,是此类题目的常见解法.8、C【解析】
由菱形的性质求出∠ACB=50°,由边形是圆内接四边形可求出∠AEB=80°,然后利用三角形外角的性质即可求出的度数.【详解】∵四边形是菱形,,∴,∵四边形是圆内接四边形,∴,∴,故选:C.【点睛】本题考查了菱形的性质,圆内接四边形的性质,三角形外角的性质.圆内接四边形的性:①圆内接四边形的对角互补,②圆内接四边形的外角等于它的内对角,③圆内接四边形对边乘积的和,等于对角线的乘积.9、C【解析】
先求出一次函数y=kx+b与x轴和y轴的交点,再利用三角形的面积公式得到关于k的方程,解方程即可求出k的值.【详解】∵一次函数y=kx+b(k≠0)图象过点(0,1),∴b=1,令y=0,则x=-,∵函数图象与两坐标轴围成的三角形面积为1,∴×1×|-|=1,即||=1,解得:k=±1,则函数的解析式是y=x+1或y=-x+1.故选C.10、A【解析】
根据菱形的定义和判定定理即可作出判断.【详解】A、根据菱形的定义可得,当AB=AD时平行四边形ABCD是菱形,故A选项符合题意;B、根据对角线相等的平行四边形是矩形,可知AC=BD时,平行四边形ABCD是矩形,故B选项不符合题意;C、有一个角是直角的平行四边形是矩形,可知当∠ABC=90°时,平行四边形ABCD是矩形,故C选项不符合题意;D、由平行四边形的性质可知∠ABC=∠ADC,∠ABC=∠ADC这是一个已知条件,因此不能判定平行四边形ABCD是菱形,故D选项不符合题意,故选A.【点睛】本题考查了平行四边形的性质,菱形的判定、矩形的判定等,熟练掌握相关的判定方法是解题的关键.二、填空题(每小题3分,共24分)11、【解析】
先提取4,然后利用平方差公式计算.【详解】原式=4(m2-9)=4(m+3)(m-3),
故答案是:4(m+3)(m-3)【点睛】考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键,一般有公因式会先提取公因式.12、【解析】
根据多边形的内角和公式,求出每个内角的度数,延长EF交直线l1
于点M,利用平行线的性质把∠1搬到∠3处,利用三角形的外角计算出结果【详解】延长EF交直线l1于点M,如图所示∵ABCDEF是正六边形∴∠AFE=∠A=120°∴∠MFA=60°∵11∥12∴∠1=∠3∵∠3=∠2+∠MFA∴∠1﹣∠2=∠MFA=60°故答案为:60°【点睛】此题主要考查了平行线的性质,关键是掌握两直线平行、内错角相等,同旁内角互补.13、【解析】
首先证明△DEA′是等腰直角三角形,求出DE,再说明DG=GE即可解决问题.【详解】解:由翻折可知:DA′=A′E=4,∵∠DA′E=90°,∴DE=,∵A′C′=2=DC′,C′G∥A′E,∴DG=GE=,故答案为:.【点睛】本题考查翻折变换,等腰直角三角形的判定和性质,平行线的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.14、>.【解析】
函数解析式y=-2x+b知k<0,可得y随x的增大而减小,即可求解.【详解】y=-2x+b中k<0,∴y随x的增大而减小,∵-1<2,∴y1>y2,故答案为>.【点睛】本题考查一次函数的图象及性质;熟练掌握一次函数的图象及性质是解题的关键.15、二、四【解析】
用待定系数法求出k的值,根据反比例函数的性质判断其图像所在的象限即可.【详解】解:将点代入得,解得:因为k<0,所以的图像在二、四象限.故答案为:二、四【点睛】本题考查了反比例函数的性质,,当k>0时,图像在一、三象限,当k<0时,图像在二、四象限,正确掌握该性质是解题的关键.16、AB=BC或BC=CD或CD=AD或AD=AB或AC⊥BD或AB=BC=CD=DA【解析】根据一组邻边相等的平行四边形是菱形可得,添加的条件可以是:AB=BC或BC=CD或CD=AD或AD=AB;根据对角线互相垂直的平行四边形是菱形可得,添加的条件可以是:AC⊥BD;根据四边相等的平行四边形是菱形可得,添加的条件可以是:AB=BC=CD=DA.故答案是:AB=BC或BC=CD或CD=AD或AD=AB或AC⊥BD或AB=BC=CD=DA.17、七【解析】
根据多边形的内角和公式,列式求解即可.【详解】设这个多边形是边形,根据题意得,,解得.故答案为.【点睛】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.18、2【解析】
先解方程求得方程的两根,那么根据三角形的三边关系,得到合题意的边,进而求得三角形周长即可.【详解】解:解方程得第三边的边长为2或1.第三边的边长,第三边的边长为1,这个三角形的周长是.故答案为2.【点睛】本题考查了一元二次方程的解法和三角形的三边关系定理.已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.三、解答题(共66分)19、(1)自变量是时间;(2)大约在3时水位最深,最深是8米;(3)在0到3时和9到12时,水位是随着时间推移不断上涨的.【解析】
(1)根据函数图象,可以直接写出自变量;
(2)根据函数图象中的数据可以得到大约在什么时间水位最深,最深是多少;
(3)根据函数图象,可以写出大约在什么时间段水位是随着时间推移不断上涨的.【详解】(1)由图象可得,在这一问题中,自变量是时间;(2)大约在3时水位最深,最深是8米;(3)由图象可得,在0到3时和9到12时,水位是随着时间推移不断上涨的.【点睛】本题考查函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.20、解:设从墙上的影子的顶端到树的顶端的垂直高度是x米.则有0.8/1=x/5.5解得x=1.1.∴树高是1.1+1.5=5.9(米),【解析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.本题中:经过树在教学楼上的影子的顶端作树的垂线和经过树顶的太阳光线以及树所成三角形,与竹竿,影子光线形成的三角形相似,这样就可求出垂足到树的顶端的高度,再加上墙上的影高就是树高.21、(1)(x﹣y)(x+y);(2)﹣2<x≤1【解析】分析:(1)根据提公因式法,可分解因式;(2)根据解不等式,可得每个不等式的解集,根据不等式组的解集是不等式的公共部分,可得答案.解:(1)原式=(x﹣y)(x+y);(2)解不等式①1,得x>﹣2,解不等式②,得x≤1,把不等式①②在数轴上表示如图,不等式组的解集是﹣2<x≤1.【点评】本题考查了因式分解,确定公因式(x﹣y)是解题关键.22、20元【解析】试题分析:设第一批盒装花每盒的进价为x元,根据第二批所购的盒数是第一批所购花盒数的3倍,每盒花的进价比第一批的进价少6元,列出方程求解即可.解:设第一批盒装花每盒的进价为x元,根据题意列方程得:=,解得:x=20,经检验:x=20是原方程的根;答:第一批盒装花每盒的进价是20元.考点:分式方程的应用.23、(1)3种;(2)W=,最大为1390元【解析】
(1)设购进甲种羽毛球筒,根据题意可列出关于m的不等式组,则可求得m的取值范围,再由m为整数即可求得进货方案;(2)用m表示出W,可得到W关于m的一次函数,再利用一次函数的性质即可求得答案.【详解】解:(1)设购进甲种羽毛球筒,则乙种羽毛球()筒,由题意,得,解得.又∵是整数,∴m=76,77,78共三种进货方案.(2)由题意知,甲利润:元/筒,乙利润:元/筒,∴∵随增大而增大∴当时,(元).即利润的最大值是1390元.【点睛】本题考查了一元一次不等式组的应用和一次函数的应用,弄清题意列出不等式组和一次函数解析式是解题的关键.24、(1)(1)8﹣x,30(8﹣x),280(8﹣x);(2)最节省费用的租车方案是甲种货车6辆,乙种货车2辆,最低费用为2960元【解析】
(1)设租用甲种客车x辆,根据题意填表格即可.(2)设租车的总费用为y元,则可列出关于x的解析式即为y=120x+2240,又因为学校组织330学生集体外出活动,则有不等式45x+30(8﹣x)≥330,求得x的取值范围,即可解答最节省费用的租车方案.【详解】解:(1)车辆数(辆)载客量(人)租金(元)甲种客车x45x400x乙种客车8﹣x30(8﹣x)280(8﹣x)(2)当租用甲种客车x辆时,设租车的总费用为y元,则:y=400x+280(8﹣x)=12
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年甘油胶水:UV胶水项目建议书
- 消防宣传活动总结15篇
- 车间维修过程管理信息系统测试计划
- 2025年贵金属压延加工材合作协议书
- 2025年基因工程亚单元疫苗合作协议书
- 2025年防雾涂料合作协议书
- 教育心理学指导下的教学方案设计
- 教育技术如何重塑商业未来
- 安徽省滁州市定远县西片区2025届高一物理第二学期期末考试试题含解析
- 心理辅导与教育心理学的融合实践
- 社会调查研究与方法-001-国开机考复习资料
- 《个体防护装备安全管理规范AQ 6111-2023》知识培训
- 菏泽学院社会心理学(专升本)复习题
- 九年级语文上册《你是人间的四月天》课件
- 人工智能语言与伦理学习通超星期末考试答案章节答案2024年
- 2024年部编版九年级语文上册电子课本(高清版)
- 湖南省长沙市平高教育集团六校2023-2024学年高二下学期期末联考+化学试卷(含答案)
- 2024年专技人员公需科目考试答
- DL∕T 1100.3-2018 电力系统的时间同步系统 第3部分:基于数字同步网的时间同步技术规范
- 外科学课件换药及拆线
- 2024年高考英语读后续写真题试题分析及范文讲义
评论
0/150
提交评论