甘肃省白银市平川四中学2024年八年级数学第二学期期末综合测试模拟试题含解析_第1页
甘肃省白银市平川四中学2024年八年级数学第二学期期末综合测试模拟试题含解析_第2页
甘肃省白银市平川四中学2024年八年级数学第二学期期末综合测试模拟试题含解析_第3页
甘肃省白银市平川四中学2024年八年级数学第二学期期末综合测试模拟试题含解析_第4页
甘肃省白银市平川四中学2024年八年级数学第二学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

甘肃省白银市平川四中学2024年八年级数学第二学期期末综合测试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.分式方程的解为().A. B. C. D.2.某课外兴趣小组为了了解所在学校的学生对体育运动的爱好情况,设计了四种不同的抽样调查方案,你认为比较合理的是()A.在校园内随机选择50名学生B.从运动场随机选择50名男生C.从图书馆随机选择50名女生D.从七年级学生中随机选择50名学生3.已知一次函数的图象经过点(0,3)和(-2,0),那么直线必经过点()A.(-4,-3) B.(4,6) C.(6,9) D.(-6,6)4.若是关于的一元二次方程,则的取值范围是()A. B. C. D.5.小强和小华两人玩“剪刀、石头、布”游戏,随机出手一次,则两人平局的概率为()A. B. C. D.6.如图,平行四边形ABCD中,AB=8cm,AD=12cm,点P在AD边上以每秒1cm的速度从点A向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在运动以后,以P、D、Q、B四点组成平行四边形的次数有()A.4次 B.3次 C.2次 D.1次7.下列说法正确的是().A.掷一颗骰子,点数一定小于等于6;B.抛一枚硬币,反面一定朝上;C.为了解一种灯泡的使用寿命,宜采用普查的方法;D.“明天的降水概率为90%”,表示明天会有90%的地方下雨.8.某特警部队为了选拔“神枪手”,举行了1000米射击比赛,最后甲、乙两名战士进入决赛,在相同条件下,两人各射靶10次,经过统计计算,甲、乙两名战士的总成绩都是99.68环,甲的方差是0.28,乙的方差是是0.1.则下列说法中,正确的是()A.甲的成绩比乙的成绩稳定 B.乙的成绩比甲的成绩稳定C.甲、乙两人成绩的稳定性相同 D.无法确定谁的成绩更稳定9.下列曲线中不能表示是的函数的是()A.(A) B.(B) C.(C) D.(D)10.如图,已知△ABC中,AB=10,AC=8,BC=6,DE是AC的垂直平分线,DE交AB于点D,交AC于点E,连接CD,则CD的长度为()A.3 B.4 C.4.8 D.511.若,则下列不等式一定成立的是()A. B. C. D.12.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律。则第(6)个图形中面积为1的正方形的个数为()A.20 B.25 C.35 D.27二、填空题(每题4分,共24分)13.不等式-->-1的正整数解是_____.14.如图,在平面直角坐标系中,AD∥BC,AD=5,B(-3,0),C(9,0),点E是BC的中点,点P是线段BC上一动点,当PB=________时,以点P、A、D、E为顶点的四边形是平行四边形.15.如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生1500人,则据此估计步行的有_____.16.将矩形ABCD按如图所示的方式折叠,得到菱形AECF,若AB=9,则菱形AECF的周长为______.17.已知反比例函数的图像经过点、,则k的值等于_____.18.计算:(π﹣3)0﹣(﹣)﹣2=_____.三、解答题(共78分)19.(8分)如图1,为坐标原点,矩形的顶点,,将矩形绕点按顺时针方向旋转一定的角度得到矩形,此时边、直线分别与直线交于点、.(1)连接,在旋转过程中,当时,求点坐标.(2)连接,当时,若为线段中点,求的面积.(3)如图2,连接,以为斜边向上作等腰直角,请直接写出在旋转过程中的最小值.20.(8分)如图,在正方形网格中每个小正方形的边长为1,小正方形的顶点称为格点,在正方形网格中分别画出下列图形:(1)在图(1)网格中画出长为的线段AB.(2)在图(2)网格中画出一个腰长为,面积为3的等腰21.(8分)某商场计划购进甲、乙两种商品共件,这两种商品的进价、售价如表所示:进价(元/件)售价(元/件)甲种商品乙种商品设购进甲种商品(,且为整数)件,售完此两种商品总利润为元.(1)该商场计划最多投入元用于购进这两种商品共件,求至少购进甲种商品多少件?(2)求与的函数关系式;(3)若售完这些商品,商场可获得的最大利润是__________元.22.(10分)如图:矩形ABCD中,AB=2,BC=5,E、P分别在AD、BC上,且DE=BP=1.(1)判断△BEC的形状,并说明理由?(2)判断四边形EFPH是什么特殊四边形?并证明你的判断;(3)求四边形EFPH的面积.23.(10分)如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是ts.过点D作DF⊥BC于点F,连接DE、EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.24.(10分)已知:如图,一次函数y=kx+3的图象与反比例函数y=(x>0)的图象交于点P.PA⊥x轴于点A,PB⊥y轴于点B.一次函数的图象分别交x轴、y轴于点C.点D,且S△DBP=27,(1)求点D的坐标;(2)求一次函数与反比例函数的解析式25.(12分)某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的原始分均为100分.前6名选手的得分如下:根据规定,笔试成绩和面试成绩分别按一定的百分比折和成综合成绩(综合成绩的满分仍为100分)(1)这6名选手笔试成绩的中位数是分,众数是分.(2)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比.(3)求出其余五名选手的综合成绩,并以综合成绩排序确定前两名人选.26.已知:如图,在中,,cm,cm.直线从点出发,以2cm/s的速度向点方向运动,并始终与平行,与线段交于点.同时,点从点出发,以1cm/s的速度沿向点运动,设运动时间为(s)().(1)当为何值时,四边形是矩形?(2)当面积是的面积的5倍时,求出的值;

参考答案一、选择题(每题4分,共48分)1、C【解析】试题分析:去分母得:x+1=2x,解得:x=1,经检验x=1是分式方程的解.故选C.考点:解分式方程.2、A【解析】

抽样调查中,抽取的样本不能太片面,一定要具有代表性.【详解】解:A、在校园内随机选择50名学生,具有代表性,合理;B、从运动场随机选择50名男生,喜欢运动,具有片面性,不合理;C、从图书馆随机选择50名女生,喜欢读书,具有片面性,不合理;D、从七年级学生中随机选择50名学生,具有片面性,不合理;故选:A.【点睛】本题考查了抽样调查的性质:①全面性;②代表性.3、A【解析】分析:先根据“待定系数法”确定一次函数解析式,再检验直线解析式是否满足各点的横纵坐标.详解:设经过两点(0,3)和(−2,0)的直线解析式为y=kx+b,则,解得,∴y=x+3;A.当x=−4时,y=×(−4)+3=−3,点在直线上;B.当x=4时,y=×4+3=9≠6,点不在直线上;C.当x=6时,y=×6+3=12≠9,点不在直线上;D.当x=−6时,y=×(−6)+3=−6≠6,点不在直线上;故选A.点睛:本题考查用待定系数法求直线解析式以及一定经过某点的函数应适合这个点的横纵坐标,用待定系数法求出一次函数的解析式是解答本题的关键.4、B【解析】

根据一元二次方程的定义即可求出答案.【详解】解:由题意可知:a﹣1≠0,∴a≠1,故选:B.【点睛】本题考查一元二次方程的定义,解题的关键是正确理解一元二次方程的定义,本题属于基础题型.5、B【解析】试题解析:小强和小华玩“石头、剪刀、布”游戏,所有可能出现的结果列表如下:小强小华石头剪刀布石头(石头,石头)(石头,剪刀)(石头,布)剪刀(剪刀,石头)(剪刀,剪刀)(剪刀,布)布(布,石头)(布,剪刀)(布,布)∵由表格可知,共有9种等可能情况.其中平局的有3种:(石头,石头)、(剪刀,剪刀)、(布,布).∴小明和小颖平局的概率为:.故选B.考点:概率公式.6、B【解析】

试题解析:∵四边形ABCD是平行四边形,∴BC=AD=12,AD∥BC,∵四边形PDQB是平行四边形,∴PD=BQ,∵P的速度是1cm/秒,∴两点运动的时间为12÷1=12s,∴Q运动的路程为12×4=48cm,∴在BC上运动的次数为48÷12=4次,第一次PD=QB时,12-t=12-4t,解得t=0,不合题意,舍去;

第二次PD=QB时,Q从B到C的过程中,12-t=4t-12,解得t=4.8;

第三次PD=QB时,Q运动一个来回后从C到B,12-t=31-4t,解得t=8;

第四次PD=QB时,Q在BC上运动3次后从B到C,12-t=4t-31,解得t=9.1.

∴在运动以后,以P、D、Q、B四点组成平行四边形的次数有3次,

故选:B.考点:平行四边形的判定与性质7、A【解析】

对各项的说法逐一进行判断即可.【详解】A.掷一颗骰子,点数一定小于等于6,正确;B.抛一枚硬币,反面不一定朝上,错误;C.为了解一种灯泡的使用寿命,宜采用抽样调查的方法,错误;D.“明天的降水概率为90%”,表示明天会有90%的几率下雨,错误;故答案为:A.【点睛】本题考查了命题的问题,掌握概率的性质、概率统计的方法是解题的关键.8、B【解析】方差就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越小,说明数据的波动越小,越稳定.因此,∵0.1<0.28,∴乙的成绩比甲的成绩稳定.故选B.9、B【解析】分析:函数的定义:设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量.由此即可判断.详解:当给x一个值时,y有唯一的值与其对应,就说y是x的函数,x是自变量.选项B中的曲线,不满足对于自变量的每一个确定的值,函数值有且只有一个值与之对应,即单对应.故B中曲线不能表示y是x的函数.故选:B.点睛:考查了函数的概念,理解函数的定义,是解决本题的关键.10、D【解析】

已知AB=10,AC=8,BC=8,根据勾股定理的逆定理可判定△ABC为直角三角形,又因DE为AC边的中垂线,可得DE⊥AC,AE=CE=4,所以DE为三角形ABC的中位线,即可得DE==3,再根据勾股定理求出CD=5,故答案选D.考点:勾股定理及逆定理;中位线定理;中垂线的性质.11、D【解析】

根据不等式的基本性质解答即可.【详解】解:∵a<b,

∴A.a−6<b-6,故A错误;B.3a<3b,,故B错误;C.-2a>-2b,故C错误;D.,故D正确,

故选:D.【点睛】本题考查了不等式的性质,熟练运用不等式的性质是解题的关键.12、D【解析】

第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+n+1=个,进一步求得第(6)个图形中面积为1的正方形的个数即可.【详解】第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+(n+1)=个,则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个。故选:D【点睛】此题考查规律型:图形的变化类,解题关键在于找到规律二、填空题(每题4分,共24分)13、1,1【解析】

首先确定不等式的解集,然后再找出不等式的特殊解.【详解】解:解不等式得:x<3,故不等式的正整数解为:1,1.故答案为1,1.【点睛】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键,解不等式应根据不等式的基本性质.14、1或11【解析】

根据题意求得AD的值,再利用平行四边形性质分类讨论,即可解决问题.【详解】∵B(-3,0),C(9,0)∴BC=12∵点E是BC的中点∴BE=CE=6∵AD∥BC∴AD=5∴当PE=5时,以点P、A、D、E为顶点的四边形是平行四边形.分两种情况:当点P在点E左边时,PB=BE-PE=6-5=1;②当点P在点E右边时,PB=BE+PE=6+5=11综上所述,当PB的长为1或11时,以点P、A、D、E为顶点的四边形是平行四边形.【点睛】本题考查了平行四边形的性质,注意分类讨论思想的运用.15、1【解析】

∵骑车的学生所占的百分比是×100%=35%,∴步行的学生所占的百分比是1﹣10%﹣15%﹣35%=40%,∴若该校共有学生1500人,则据此估计步行的有1500×40%=1(人),故答案为1.16、1【解析】

根据折叠的性质得AD=AO,CO=BC,∠BCE=∠OCE,所以AC=2BC,则根据含30度的直角三角形三边的关系得∠CAB=30°,于是BC=33AB=33,∠ACB=60°,接着计算出∠BCE=30°,然后计算出BE=33BC=3,CE=2BE=6,于是可得菱形【详解】解:∵矩形ABCD按如图所示的方式折叠,得到菱形AECF,∴AD=AO,CO=BC,∠BCE=∠OCE,而AD=BC,∴AC=2BC,∴∠CAB=30°,∴BC=33AB=33,∠ACB=60∴∠BCE=30°,∴BE=33BC=3∴CE=2BE=6,∴菱形AECF的周长=4×6=1.故答案为:1【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了含30度的直角三角形三边的关系.17、6【解析】

根据反比例函数的性质,k=xy,把A、B坐标代入列出方程组求解即可得k的值。【详解】解:∵、在的图像上,∴解得:m=3,k=6∴k=6【点睛】本题考查了反比例函数,熟练掌握待定系数法求函数解析式是关键。18、-1.【解析】

根据零指数幂以及负整数指数幂的意义即可求出答案.【详解】解:原式=1﹣(﹣2)2=1﹣4=﹣1故答案为:﹣1.【点睛】本题考查了零指数幂以及负整数指数幂的运算,掌握基本的运算法则是解题的关键.三、解答题(共78分)19、(1)P(﹣4,6);(2);(3)【解析】

(1)利用∠PAO=∠POA得出PA=PO,进而得出AE=EO=4,即可得出P点坐标;(2)首先得出Rt△OCQ≌Rt△OC'Q(HL),进而利用平行线的性质求出∠POQ=∠PQO,即可得出BP=PO,再利用勾股定理得出PQ的长,进而求出△OPQ的面积;(3)先构造一组手拉手的相似三角形,将CM的长转化为,然后通过垂线段最短及全等三角形求解即可.【详解】解:如图1,过点P作PE⊥AO于点E,∵,∴AO=8,∵∠PAO=∠POA∴PA=PO,∵PE⊥AO,∴AE=EO=4,∴P(﹣4,6);(2)如图2,在Rt△OCQ和Rt△OC'Q中,,∴Rt△OCQ≌Rt△OC'Q(HL),∴∠OQC=∠OQC',又∵OP∥C'Q,∵∠POQ=∠OQC',∴∠POQ=∠PQO,∴PO=PQ,∵点P为BQ的中点,∴BP=QP,∴设BP=OP=x,在Rt△OPC中,OP2=PC2+OC2,∴x2=(8﹣x)2+62,解得:x=.故S△OPQ=×CO×PQ=×6×=.(3)如图3,连接CM、AC,在AC的右侧以AC为腰,∠ACG为直角作等腰直角三角形ACG,连接QG,∵△AMQ与△ACG为等腰直角三角形,∴,∠MAQ=∠CAG=45°,∴,∠MAC=∠QAG∴△MAC∽△QAC,∴,∴,∵点Q在直线BC上,∴当GQ⊥BC时,GQ取得最小值,如图3,作GH⊥BC,则GQ的最小值为线段GH的长,∵∠ACG=∠B=90°,∴∠ACB+∠GCH=∠ACB+∠BAC=90°,∴∠GCH=∠BAC,又∵∠B=∠GHC=90°,AC=CG,∴△ABC≌△CHG(AAS)∴GH=BC=8∴GQ的最小值为8,∴CM的最小值为.【点睛】此题主要考查了矩形的判定与性质以及全等三角形的判定与性质、勾股定理、三角形面积求法等知识,正确得出PO=PQ是解题关键,最后一小问需要构造相似三角形进行转化,有点难度.20、(1)见解析;(2)见解析.【解析】

(1)根据勾股定理可得直角边长为2和1的直角三角形斜边长为;

(2)根据勾股定理可得直角边长为3和1的直角三角形斜边长为,再根据面积为3确定△DEF.【详解】解如图所示图(1)图(2)【点睛】此题主要考查了勾股定理的应用,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.21、(1)50件;(2);(3)795【解析】

(1)根据表格中的数据和题意列不等式,根据且x为整数即可求出x的取值范围得到答案;(2)根据题意和表格中的数据即可得到函数关系式;(3)根据(2)中的函数关系式和一次函数的性质即可求出答案.【详解】(1)由题意得15x+25(80-x),解得x,∵,且为整数,∴,且为整数,∴至少购进甲种商品50件;(2)由题意得,∴y与x的函数关系式是;(3)∵,,且为整数,∴当x=1时,y有最大值,此时y最大值=795,故答案为:795.【点睛】此题考查一元一次不等式的实际应用,一次函数的实际应用,一次函数的性质求函数的最大值,正确理解题意列不等式或函数解决问题是解题的关键.22、(1)△BEC是直角三角形,理由见解析(2)四边形EFPH为矩形,理由见解析(3)【解析】(1)△BEC是直角三角形,理由略(2)四边形EFPH为矩形证明:在矩形ABCD中,∠ABC=∠BCD=900∴PA=,PD=2∵AD=BC=5∴AP2+PD2=25=AD2∴∠APD=900(3分)同理∠BEC=900∵DE=BP∴四边形BPDE为平行四边形∴BE∥PD(4分)∴∠EHP=∠APD=900,又∵∠BEC=900∴四边形EFPH为矩形(5分)(3)在RT△PCD中∠FfPD∴PD·CF=PC·CD∴CF==∴EF=CE-CF=-=(7分)∵PF==∴S四边形EFPH=EF·PF=(1)根据矩形性质得出CD=2,根据勾股定理求出CE和BE,求出CE2+BE2的值,求出BC2,根据勾股定理的逆定理求出即可;(2)根据矩形的性质和平行四边形的判定,推出平行四边形DEBP和AECP,推出EH∥FP,EF∥HP,推出平行四边形EFPH,根据矩形的判定推出即可;(2)根据三角形的面积公式求出CF,求出EF,根据勾股定理求出PF,根据面积公式求出即可.23、(1)详见解析;(2)当t=10时,▱AEFD是菱形;(3)当t=时,△DEF是直角三角形(∠EDF=90°);当t=1时,△DEF是直角三角形(∠DEF=90°).【解析】

(1)在Rt△ABC中,根据已知条件求得∠C=30°,由题意可知CD=4tcm,AE=2tcm;在直角△CDF中,根据30°角直角三角形的性质可得DF=CD=2tcm,由此即可证得DF=AE;(2)由DF∥AB,DF=AE,根据一组对边平行且相等的四边形是平行四边形可得四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,即可得60﹣4t=2t,解得t=10,即当t=10时,▱AEFD是菱形;(2)能,分∠EDF=90°和∠DEF=90°两种情况求t的值即可.【详解】(1)证明:∵在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,∴∠C=90°﹣∠A=30°.由题意可知,CD=4tcm,AE=2tcm,又∵在直角△CDF中,∠C=30°,∴DF=CD=2tcm,∴DF=AE;(2)∵DF∥AB,DF=AE,∴四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,即60﹣4t=2t,解得:t=10,即当t=10时,▱AEFD是菱形;(3)当t=时△DEF是直角三角形(∠EDF=90°);当t=1时,△DEF是直角三角形(∠DEF=90°).理由如下:当∠EDF=90°时,DE∥BC.∴∠ADE=∠C=30°∴AD=2AE∵CD=4tcm,∴DF=AE=2tcm,∴AD=2AE=4tcm,∴4t+4t=60,∴t=时,∠EDF=90°.当∠DEF=90°时,DE⊥EF,∵四边形AEFD是平行四边形,∴AD∥EF,∴DE⊥AD,∴△ADE是直角三角形,∠ADE=90°,∵∠A=60°,∴∠DEA=30°,∴AD=AE,AD=AC﹣CD=60﹣4t(cm),AE=DF=CD=2tcm,∴60﹣4t=t,解得t=1.综上所述,当t=时△DEF是直角三角形(∠EDF=90°);当t=1时,△DEF是直角三角形(∠DEF=90°).【点睛】本题考查了直角三角形的性质,菱形的判定与性质,正确利用t表示DF、AD的长是解决问题的关键.24、(1)(0,3);(2)y=−x+3,y=−【解析】

(1)根据一次函数与y轴的交点,从而得出D点的坐标.(2)根据在Rt△COD和Rt△CAP中,,OD=3,再根据S△DBP=27,从而得【详解】(1)∵一次函数y=kx+3与y轴相交,∴令x=0,解得y=3,得D的坐标为(0,3);(2)∵OD⊥OA,AP⊥OA,∠DCO=∠ACP,∠DOC=∠CAP=90°,∴Rt△COD∽Rt△CAP,则,OD=3,∴AP=OB=6,∴DB=OD+OB=9,在Rt△DBP中,∴=27,即,∴BP=6,故P(6,−6),把P坐标代入y=kx+3,得到k=−,则一次函数的解析式为:y=−x+3;把P坐标代入反比

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论