![2021-2023年全国高考数学典例真题汇编(新高考模式训练)23_第1页](http://file4.renrendoc.com/view4/M02/16/29/wKhkGGYYEvKAA0x8AAGGfzKVq74430.jpg)
![2021-2023年全国高考数学典例真题汇编(新高考模式训练)23_第2页](http://file4.renrendoc.com/view4/M02/16/29/wKhkGGYYEvKAA0x8AAGGfzKVq744302.jpg)
![2021-2023年全国高考数学典例真题汇编(新高考模式训练)23_第3页](http://file4.renrendoc.com/view4/M02/16/29/wKhkGGYYEvKAA0x8AAGGfzKVq744303.jpg)
![2021-2023年全国高考数学典例真题汇编(新高考模式训练)23_第4页](http://file4.renrendoc.com/view4/M02/16/29/wKhkGGYYEvKAA0x8AAGGfzKVq744304.jpg)
![2021-2023年全国高考数学典例真题汇编(新高考模式训练)23_第5页](http://file4.renrendoc.com/view4/M02/16/29/wKhkGGYYEvKAA0x8AAGGfzKVq744305.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
试卷第1页,共SECTIONPAGES1页2021-2023年全国高考数学典例真题汇编(新高考模式训练)23姓名:___________班级:___________一.单选题1.【2022-全国II卷数学高考真题】()A. B. C. D.2.【2021-新高考Ⅰ卷】已知,则()A. B. C. D.3.【2023-北京数学乙卷高考真题】在复平面内,复数对应的点的坐标是,则的共轭复数()A. B.C. D.4.【2023-全国数学甲卷(文)高考真题】某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为()A. B. C. D.5.【2022-天津数学高考真题】已知抛物线分别是双曲线的左、右焦点,抛物线的准线过双曲线的左焦点,与双曲线的渐近线交于点A,若,则双曲线的标准方程为()A. B.C. D.6.【2021-全国甲卷(理)】将4个1和2个0随机排成一行,则2个0不相邻的概率为()A. B. C. D.7.【2021-浙江卷】已知函数,则图象为如图的函数可能是()A. B.C. D.8.【2021-浙江卷】已知,函数.若成等比数列,则平面上点的轨迹是()A.直线和圆 B.直线和椭圆 C.直线和双曲线 D.直线和抛物线二.多选题9.【2021-新高考Ⅰ卷】有一组样本数据,,…,,由这组数据得到新样本数据,,…,,其中(为非零常数,则()A.两组样本数据的样本平均数相同B.两组样本数据的样本中位数相同C.两组样本数据的样本标准差相同D.两组样数据的样本极差相同10.【2021-全国新高II卷】已知直线与圆,点,则下列说法正确的是()A.若点A在圆C上,则直线l与圆C相切 B.若点A在圆C内,则直线l与圆C相离C.若点A在圆C外,则直线l与圆C相离 D.若点A在直线l上,则直线l与圆C相切11.【2021-新高考Ⅰ卷】已知点在圆上,点、,则()A.点到直线的距离小于B.点到直线的距离大于C.当最小时,D.当最大时,三.填空题12.【2021-浙江卷】我国古代数学家赵爽用弦图给出了勾股定理的证明.弦图是由四个全等的直角三角形和中间的一个小正方形拼成的一个大正方形(如图所示).若直角三角形直角边的长分别是3,4,记大正方形的面积为,小正方形的面积为,则___________.13.【2022-浙江卷数学高考真题】若,则__________,_________.14.【2022-天津数学高考真题】已知是虚数单位,化简的结果为_______.四.解答题15.【2023-全国数学乙卷(文)高考真题】某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率.甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为,.试验结果如下:试验序号12345678910伸缩率545533551522575544541568596548伸缩率536527543530560533522550576536记,记的样本平均数为,样本方差为.(1)求,;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高)16.【2023-天津卷数学真题】三棱台中,若面,分别是中点.(1)求证://平面;(2)求平面与平面所成夹角的余弦值;(3)求点到平面的距离.17.【2021-全国新高II卷】记是公差不为0等差数列的前n项和,若.(1)求数列的通项公式;(2)求使成立的n的最小值.18.【2021-全国新高II卷】一种微生物群体可以经过自身繁殖不断生存下来,设一个这种微生物为第0代,经过一次繁殖后为第1代,再经过一次繁殖后为第2代……,该微生物每代繁殖的个数是相互独立的且有相同的分布列,设X表示1个微生物个体繁殖下一代的个数,.(1)已知,求;(2)设p表示该种微生物经过多代繁殖后临近灭绝的概率,p是关于x的方程:的一个最小正实根,求证:当时,,当时,;(3)根据你的理解说明(2)问结论的实际含义.19.【2021-全国甲卷(理)】已知函数.(1)画出和的图像;(2)若,求a的取值范围.答案第1页,共SECTIONPAGES1页2021-2023年全国高考数学典例真题汇编(新高考模式训练)23【参考答案】1.答案:D解析:,故选:D.2.答案:C解析:因为,故,故故选:C.3.答案:D解析:在复平面对应的点是,根据复数的几何意义,,由共轭复数的定义可知,.故选:D4.答案:D解析:依题意,从这4名学生中随机选2名组织校文艺汇演,总的基本事件有件,其中这2名学生来自不同年级的基本事件有,所以这2名学生来自不同年级的概率为.故选:D.5.答案:C解析:抛物线的准线方程为,则,则、,不妨设点为第二象限内的点,联立,可得,即点,因为且,则为等腰直角三角形,且,即,可得,所以,,解得,因此,双曲线的标准方程为.故选:C.6.答案:C解析:将4个1和2个0随机排成一行,可利用插空法,4个1产生5个空,若2个0相邻,则有种排法,若2个0不相邻,则有种排法,所以2个0不相邻的概率为.故选:C.7.答案:D解析:对于A,,该函数非奇非偶函数,与函数图象不符,排除A;对于B,,该函数为非奇非偶函数,与函数图象不符,排除B;对于C,,则,当时,,与图象不符,排除C.故选:D.8.答案:C解析:由题意得,即,对其进行整理变形:,,,,所以或,其中为双曲线,为直线.故选:C.【点睛】关键点点睛:本题考查轨迹方程,关键之处在于由题意对所得的等式进行恒等变形,提现了核心素养中的逻辑推理素养和数学运算素养,属于中等题.9.答案:CD解析:A:且,故平均数不相同,错误;B:若第一组中位数为,则第二组的中位数为,显然不相同,错误;C:,故方差相同,正确;D:由极差的定义知:若第一组的极差为,则第二组的极差为,故极差相同,正确;故选:CD10.答案:ABD解析:圆心到直线l的距离,若点在圆C上,则,所以,则直线l与圆C相切,故A正确;若点在圆C内,则,所以,则直线l与圆C相离,故B正确;若点在圆C外,则,所以,则直线l与圆C相交,故C错误;若点在直线l上,则即,所以,直线l与圆C相切,故D正确.故选:ABD.11.答案:ACD解析:圆的圆心为,半径为,直线的方程为,即,圆心到直线的距离为,所以,点到直线的距离的最小值为,最大值为,A选项正确,B选项错误;如下图所示:当最大或最小时,与圆相切,连接、,可知,,,由勾股定理可得,CD选项正确.故选:ACD.【点睛】结论点睛:若直线与半径为圆相离,圆心到直线的距离为,则圆上一点到直线的距离的取值范围是.12.答案:25解析:由题意可得,大正方形的边长为:,则其面积为:,小正方形的面积:,从而.故答案为:25.13.答案:①.②.解析:,∴,即,即,令,,则,∴,即,∴,则.故答案为:;.
14.答案:##解析:.故答案为:.
15.答案:(1),;(2)认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高.解析:(2)根据公式计算出的值,和比较大小即可.【小问1详解】,,,的值分别为:,故【小问2详解】由(1)知:,,故有,所以认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高.16.答案:(1)证明见解析(2)(3)解析:(2)利用二面角的定义,作出二面角的平面角后进行求解;(3)方法一是利用线面垂直的关系,找到垂线段的长,方法二无需找垂线段长,直接利用等体积法求解小问1详解】连接.由分别是的中点,根据中位线性质,//,且,由棱台性质,//,于是//,由可知,四边形是平行四边形,则//,又平面,平面,于是//平面.【小问2详解】过作,垂足为,过作,垂足为,连接.由面,面,故,又,,平面,则平面.由平面,故,又,,平面,于是平面,由平面,故.于是平面与平面所成角即.又,,则,故,在中,,则,于是【小问3详解】[方法一:几何法]过作,垂足为,作,垂足为,连接,过作,垂足为.由题干数据可得,,,根据勾股定理,,由平面,平面,则,又,,平面,于是平面.又平面,则,又,,平面,故平面.在中,,又,故点到平面的距离是到平面的距离的两倍,即点到平面的距离是.[方法二:等体积法]辅助线同方法一.设点到平面的距离为.,.由,即.17.答案:(1);(2)7.解析:(2)首先求得前n项和的表达式,然后求解二次不等式即可确定n的最小值.(1)由等差数列的性质可得:,则:,设等差数列的公差为,从而有:,,从而:,由于公差不为零,故:,数列的通项公式为:.(2)由数列的通项公式可得:,则:,则不等式即:,整理可得:,解得:或,又为正整数,故的最小值为.【点睛】等差数列基本量的求解是等差数列中的一类基本问题,解决这类问题的关键在于熟练掌握等差数列的有关公式并能灵活运用.18.答案:(1)1;(2)见解析;(3)见解析.解析:(2)利用导数讨论函数的单调性,结合及极值点的范围可得的最小正零点.(3)利用期望的意义及根的范围可得相应的理解说明.(1).(2)设,因为,故,若,则,故.,因为,,故有两个不同零点,且,且时,;时,;故在,上为增函数,在上为减函数,若,因为在为增函数且,而当时,因为在上为减函数,故,故为的一个最小正实根,若,因为且在上为减函数,故1为的一个最小正实根,综上,若,则.若,则,故.此时,,故有两个不同零点,且,且时,;时,;故在,上为增函数,在上为减函数,而,故,又,故在存在一个零点,且.所以为的一个最小正实根,此时,故当时,.(3)意义:每一个该种微生物繁殖后代的平均数不超过1,则若干代必然灭绝,若繁殖后代的平
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 烹饪工艺学(第2版) 课件 单元4 分解与切割工艺
- 二零二五年度门卫服务与社区物业管理信息化合同
- 《时尚北京》杂志2024年第11期
- 《贸易术语讲解》课件
- (高清版)DB37∕T 3004-2017 金银花无纺布容器嫩枝扦插育苗技术规程
- 《项目仓储系统规》课件
- 《公司兼并与收购》课件
- 二零二五年度冷链物流仓储承包经营协议3篇
- 2025至2031年中国悬挂式记录电极行业投资前景及策略咨询研究报告
- 2025至2031年中国印刷机墙板行业投资前景及策略咨询研究报告
- 《行政伦理学教程(第四版)》课件 第7、8章 行政人格、行政组织伦理
- 2024年江苏苏海控股集团有限公司招聘笔试冲刺题(带答案解析)
- 工商联业务工作培训
- 商业街消防安全培训
- 湖北省曾都区乌鸦山矿区建筑用辉绿岩矿矿产资源开发利用与生态复绿方案
- 2023年4月自考00504艺术概论试题及答案含解析
- 美丽的大自然(教案)2023-2024学年美术一年级下册
- 龙门铣床工安全操作规程培训
- 2024年低压电工考试题库(试题含答案)
- 成都特色民俗课件
- 地质勘探行业分析
评论
0/150
提交评论