版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年河北省邯郸市武安三中高三适应性调研考试数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图所示,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E、F且EF=,则下列结论中错误的是()A.AC⊥BE B.EF平面ABCDC.三棱锥A-BEF的体积为定值 D.异面直线AE,BF所成的角为定值2.函数的图象大致为A. B. C. D.3.设命题:,,则为A., B.,C., D.,4.在中,角的对边分别为,若,则的形状为()A.直角三角形 B.等腰非等边三角形C.等腰或直角三角形 D.钝角三角形5.已知函数,则下列判断错误的是()A.的最小正周期为 B.的值域为C.的图象关于直线对称 D.的图象关于点对称6.已知复数在复平面内对应的点的坐标为,则下列结论正确的是()A. B.复数的共轭复数是C. D.7.阅读如图的程序框图,运行相应的程序,则输出的的值为()A. B. C. D.8.已知定义在上函数的图象关于原点对称,且,若,则()A.0 B.1 C.673 D.6749.已知数列满足:,则()A.16 B.25 C.28 D.3310.已知函数,若方程恰有两个不同实根,则正数m的取值范围为()A. B.C. D.11.抛物线C:y2=2px的焦点F是双曲线C2:x2m-y21-m=1A.2+1 B.22+3 C.12.已知某批零件的长度误差(单位:毫米)服从正态分布,从中随机取一件,其长度误差落在区间(3,6)内的概率为()(附:若随机变量ξ服从正态分布,则,.)A.4.56% B.13.59% C.27.18% D.31.74%二、填空题:本题共4小题,每小题5分,共20分。13.已知在等差数列中,,,前n项和为,则________.14.如图,的外接圆半径为,为边上一点,且,,则的面积为______.15.若函数的图像与直线的三个相邻交点的横坐标分别是,,,则实数的值为________.16.设(其中为自然对数的底数),,若函数恰有4个不同的零点,则实数的取值范围为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在如图所示的多面体中,四边形是矩形,梯形为直角梯形,平面平面,且,,.(1)求证:平面.(2)求二面角的大小.18.(12分)某企业原有甲、乙两条生产线,为了分析两条生产线的效果,先从两条生产线生产的大量产品中各抽取了100件产品作为样本,检测一项质量指标值.该项指标值落在内的产品视为合格品,否则为不合格品.乙生产线样本的频数分布表质量指标合计频数2184814162100(1)根据甲生产线样本的频率分布直方图,以从样本中任意抽取一件产品且为合格品的频率近似代替从甲生产线生产的产品中任意抽取一件产品且为合格品的概率,估计从甲生产线生产的产品中任取5件恰有2件为合格品的概率;(2)现在该企业为提高合格率欲只保留其中一条生产线,根据上述图表所提供的数据,完成下面的列联表,并判断是否有90%把握认为该企业生产的这种产品的质量指标值与生产线有关?若有90%把握,请从合格率的角度分析保留哪条生产线较好?甲生产线乙生产线合计合格品不合格品合计附:,.0.1500.1000.0500.0250.0100.0052.0722.7063.8415.0246.6357.87919.(12分)已知在等比数列中,.(1)求数列的通项公式;(2)若,求数列前项的和.20.(12分)已知函数.(1)当(为自然对数的底数)时,求函数的极值;(2)为的导函数,当,时,求证:.21.(12分)已知函数.(1)当时,不等式恒成立,求的最小值;(2)设数列,其前项和为,证明:.22.(10分)在平面直角坐标系中,曲线的参数方程为(是参数),以原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.(1)求直线与曲线的普通方程,并求出直线的倾斜角;(2)记直线与轴的交点为是曲线上的动点,求点的最大距离.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
A.通过线面的垂直关系可证真假;B.根据线面平行可证真假;C.根据三棱锥的体积计算的公式可证真假;D.根据列举特殊情况可证真假.【详解】A.因为,所以平面,又因为平面,所以,故正确;B.因为,所以,且平面,平面,所以平面,故正确;C.因为为定值,到平面的距离为,所以为定值,故正确;D.当,,取为,如下图所示:因为,所以异面直线所成角为,且,当,,取为,如下图所示:因为,所以四边形是平行四边形,所以,所以异面直线所成角为,且,由此可知:异面直线所成角不是定值,故错误.故选:D.【点睛】本题考查立体几何中的综合应用,涉及到线面垂直与线面平行的证明、异面直线所成角以及三棱锥体积的计算,难度较难.注意求解异面直线所成角时,将直线平移至同一平面内.2、D【解析】
由题可得函数的定义域为,因为,所以函数为奇函数,排除选项B;又,,所以排除选项A、C,故选D.3、D【解析】
直接利用全称命题的否定是特称命题写出结果即可.【详解】因为全称命题的否定是特称命题,所以,命题:,,则为:,.故本题答案为D.【点睛】本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.4、C【解析】
利用正弦定理将边化角,再由,化简可得,最后分类讨论可得;【详解】解:因为所以所以所以所以所以当时,为直角三角形;当时即,为等腰三角形;的形状是等腰三角形或直角三角形故选:.【点睛】本题考查三角形形状的判断,考查正弦定理的运用,考查学生分析解决问题的能力,属于基础题.5、D【解析】
先将函数化为,再由三角函数的性质,逐项判断,即可得出结果.【详解】可得对于A,的最小正周期为,故A正确;对于B,由,可得,故B正确;对于C,正弦函数对称轴可得:解得:,当,,故C正确;对于D,正弦函数对称中心的横坐标为:解得:若图象关于点对称,则解得:,故D错误;故选:D.【点睛】本题考查三角恒等变换,三角函数的性质,熟记三角函数基本公式和基本性质,考查了分析能力和计算能力,属于基础题.6、D【解析】
首先求得,然后根据复数乘法运算、共轭复数、复数的模、复数除法运算对选项逐一分析,由此确定正确选项.【详解】由题意知复数,则,所以A选项不正确;复数的共轭复数是,所以B选项不正确;,所以C选项不正确;,所以D选项正确.故选:D【点睛】本小题考查复数的几何意义,共轭复数,复数的模,复数的乘法和除法运算等基础知识;考查运算求解能力,推理论证能力,数形结合思想.7、C【解析】
根据给定的程序框图,计算前几次的运算规律,得出运算的周期性,确定跳出循环时的n的值,进而求解的值,得到答案.【详解】由题意,,第1次循环,,满足判断条件;第2次循环,,满足判断条件;第3次循环,,满足判断条件;可得的值满足以3项为周期的计算规律,所以当时,跳出循环,此时和时的值对应的相同,即.故选:C.【点睛】本题主要考查了循环结构的程序框图的计算与输出问题,其中解答中认真审题,得出程序运行时的计算规律是解答的关键,着重考查了推理与计算能力.8、B【解析】
由题知为奇函数,且可得函数的周期为3,分别求出知函数在一个周期内的和是0,利用函数周期性对所求式子进行化简可得.【详解】因为为奇函数,故;因为,故,可知函数的周期为3;在中,令,故,故函数在一个周期内的函数值和为0,故.故选:B.【点睛】本题考查函数奇偶性与周期性综合问题.其解题思路:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.9、C【解析】
依次递推求出得解.【详解】n=1时,,n=2时,,n=3时,,n=4时,,n=5时,.故选:C【点睛】本题主要考查递推公式的应用,意在考查学生对这些知识的理解掌握水平.10、D【解析】
当时,函数周期为,画出函数图像,如图所示,方程两个不同实根,即函数和有图像两个交点,计算,,根据图像得到答案.【详解】当时,,故函数周期为,画出函数图像,如图所示:方程,即,即函数和有两个交点.,,故,,,,.根据图像知:.故选:.【点睛】本题考查了函数的零点问题,确定函数周期画出函数图像是解题的关键.11、A【解析】
先由题和抛物线的性质求得点P的坐标和双曲线的半焦距c的值,再利用双曲线的定义可求得a的值,即可求得离心率.【详解】由题意知,抛物线焦点F1,0,准线与x轴交点F'(-1,0),双曲线半焦距c=1,设点Q(-1,y)ΔFPQ是以点P为直角顶点的等腰直角三角形,即PF所以PQ⊥抛物线的准线,从而PF⊥x轴,所以P1,2∴2a=P即a=故双曲线的离心率为e=故选A【点睛】本题考查了圆锥曲线综合,分析题目,画出图像,熟悉抛物线性质以及双曲线的定义是解题的关键,属于中档题.12、B【解析】试题分析:由题意故选B.考点:正态分布二、填空题:本题共4小题,每小题5分,共20分。13、39【解析】
设等差数列公差为d,首项为,再利用基本量法列式求解公差与首项,进而求得即可.【详解】设等差数列公差为d,首项为,根据题意可得,解得,所以.故答案为:39【点睛】本题考查等差数列的基本量计算以及前n项和的公式,属于基础题.14、【解析】
先由正弦定理得到,再在三角形ABD、ADC中分别由正弦定理进一步得到B=C,最后利用面积公式计算即可.【详解】依题意可得,由正弦定理得,即,由图可知是钝角,所以,,在三角形ABD中,,,在三角形ADC中,由正弦定理得即,所以,,故,,,故的面积为.故答案为:.【点睛】本题考查正弦定理解三角形,考查学生的基本计算能力,要灵活运用正弦定理公式及三角形面积公式,本题属于中档题.15、4【解析】
由题可分析函数与的三个相邻交点中不相邻的两个交点距离为,即,进而求解即可【详解】由题意得函数的最小正周期,解得故答案为:4【点睛】本题考查正弦型函数周期的应用,考查求正弦型函数中的16、【解析】
求函数,研究函数的单调性和极值,作出函数的图象,设,若函数恰有4个零点,则等价为函数有两个零点,满足或,利用一元二次函数根的分布进行求解即可.【详解】当时,,由得:,解得,由得:,解得,即当时,函数取得极大值,同时也是最大值,(e),当,,当,,作出函数的图象如图,设,由图象知,当或,方程有一个根,当或时,方程有2个根,当时,方程有3个根,则,等价为,当时,,若函数恰有4个零点,则等价为函数有两个零点,满足或,则,即(1)解得:,故答案为:【点睛】本题主要考查函数与方程的应用,利用换元法进行转化一元二次函数根的分布以及.求的导数,研究函数的的单调性和极值是解决本题的关键,属于难题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)【解析】
(1)根据面面垂直性质及线面垂直性质,可证明;由所给线段关系,结合勾股定理逆定理,可证明,进而由线面垂直的判定定理证明平面.(2)建立空间直角坐标系,写出各个点的坐标,并求得平面和平面的法向量,由空间向量法求得两个平面夹角的余弦值,结合图形即可求得二面角的大小.【详解】(1)证明:∵平面平面ABEG,且,∴平面,∴,由题意可得,∴,∵,且,∴平面.(2)如图所示,建立空间直角坐标系,则,,,,,,.设平面的法向量是,则,令,,由(1)可知平面的法向量是,∴,由图可知,二面角为钝二面角,所以二面角的大小为.【点睛】本题考查了线面垂直的判定,面面垂直及线面垂直的性质应用,空间向量法求二面角的大小,属于中档题.18、(1)0.0081(2)见解析,保留乙生产线较好.【解析】
(1)先求出任取一件产品为合格品的频率,“从甲生产线生产的产品中任取5件,恰有2件为合格品”就相当于进行5次独立重复试验,恰好发生2次的概率用二项分布概率即可解决.(2)独立性检验算出的观测值即可判断.【详解】(1)根据甲生产线样本的频率分布直方图,样本中任取一件产品为合格品的频率为:.设“从甲生产线生产的产品中任取一件且为合格品”为事件,事件发生的概率为,则由样本可估计.那么“从甲生产线生产的产品中任取5件,恰有2件为合格品”就相当于进行5次独立重复试验,事件恰好发生2次,其概率为:.(2)列联表:甲生产线乙生产线合计合格品9096186不合格品10414合计100100200的观测值,∵,,∴有90%把握认为该企业生产的这种产品的质量指标值与生产线有关.由(1)知甲生产线的合格率为0.9,乙生产线的合格率为,∵,∴保留乙生产线较好.【点睛】此题考查独立重复性检验二项分布概率,独立性检验等知识点,认准特征代入公式即可,属于较易题目.19、(1)(2)【解析】
(1)由基本量法,求出公比后可得通项公式;(2)求出,用裂项相消法求和.【详解】解:(1)设等比数列的公比为又因为,所以解得(舍)或所以,即(2)据(1)求解知,,所以所以【点睛】本题考查求等比数列的通项公式,考查裂项相消法求和.解题方法是基本量法.基本量法是解决等差数列和等比数列的基本方法,务必掌握.20、(1)极大值,极小值;(2)详见解析.【解析】
首先确定函数的定义域和;(1)当时,根据的正负可确定单调性,进而确定极值点,代入可求得极值;(2)通过分析法可将问题转化为证明,设,令,利用导数可证得,进而得到结论.【详解】由题意得:定义域为,,(1)当时,,当和时,;当时,,在,上单调递增,在上单调递减,极大值为,极小值为.(2)要证:,即证:,即证:,化简可得:.,,即证:,设,令,则,在上单调递增,,则由,从而有:.【点睛】本题考查导数在研究函数中的应用,涉及到函数极值的求解、利用导数证明不等式的问题;本题不等
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 办公室家具选购协议
- 性能承诺设备书
- 酒精制品购销合同条款
- 2024解除劳动合同协议样本范文
- 公共设施管理的多元化服务考核试卷
- 混凝土施工安全合同范例
- 涉水设备订购合同范例
- 孕妇艾滋病预防
- 日化洗涤采购合同范例
- 滴灌安装合同范例
- 数据中心储能白皮书
- 化学实验室安全智慧树知到期末考试答案2024年
- 《养老护理员》-课件:协助老年人穿脱简易矫形器
- 浅谈美食类自媒体《日食记》的商业价值和运营策略
- 客户服务方面的SWOT分析
- 电工职业生涯展示
- 经典房地产营销策划培训(全)
- 儿童视力保护培训课件
- 实验室仪器设备管理操作指南场景版
- 码头经营方案
- 人教版数学四年级上册第五单元 《平行四边形和梯形》 大单元作业设计
评论
0/150
提交评论