版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届浙江省杭州拱墅区七校联考八年级数学第二学期期末检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.下列调查中,适合用普查的是()A.了解我省初中学生的家庭作业时间 B.了解“嫦娥四号”卫星零部件的质量C.了解一批电池的使用寿命 D.了解某市居民对废电池的处理情况2.下列二次根式,是最简二次根式的是()A. B. C. D.3.若一个多边形的内角和是外角和的5倍,则这个多边形的边数是()A.12 B.10 C.8 D.114.下列二次根式中,属于最简二次根式的是(
)A. B. C. D.5.已知实数a、b,若a>b,则下列结论正确的是()A.a+3<b+3 B.a-4<b-4 C.2a>2b D.6.点P(x,y)在第一象限,且x+y=8,点A的坐标为(6,0),设△OPA的面积为S.当S=12时,则点P的坐标为()A.(6,2) B.(4,4) C.(2,6) D.(12,﹣4)7.已知甲、乙、丙三个旅行团的游客人数都相等,且每个团游客的平均年龄都是30岁,这三个团游客年龄的方差分别是=1.4,=11.1.=25,导游小芳喜欢带游客年龄相近的团队,若要在这三个团中选择一个,则她应选()A.甲 B.乙 C.丙 D.都可以8.下列运算正确的是()A. B. C. D.9.下列四组图形中,左边的图形与右边的图形成中心对称的有()A.1组 B.2组 C.3组 D.4组10.顺次连结一个平行四边形的各边中点所得四边形的形状是()A.平行四边形 B.矩形 C.菱形 D.正方形二、填空题(每小题3分,共24分)11.用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”时第一步先假设所求证的结论不成立,即问题表述为______.12.如图,在直角梯形ABCD中,,,,联结BD,若△BDC是等边三角形,那么梯形ABCD的面积是_________;13.如图,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P.若四边形ABCD的面积是18,则DP的长是_____.14.等腰三角形的一个内角是30°,则另两个角的度数分别为___.15.一个矩形的长比宽多1cm,面积是,则矩形的长为___________16.如果关于x的不等式组的解集是,那么m=___17.如图,正方形ABCD的顶点C,A分别在x轴,y轴上,BC是菱形BDCE的对角线.若BC6,BD5,则点D的坐标是_____.18.在一个长为2米,宽为1米的矩形草地上,如图堆放着一根长方体的木块,它的棱长和场地宽AD平行且>AD,木块的正视图是边长为0.2米的正方形,一只蚂蚁从点A处,到达C处需要走的最短路程是________米.三、解答题(共66分)19.(10分)下表是随机抽取的某公司部分员工的月收入资料.(1)请计算样本的平均数和中位数;(2)甲乙两人分别用样本平均数和中位数来估计推断公司全体员工月收入水平,请你写出甲乙两人的推断结论;并指出谁的推断比较科学合理,能直实地反映公司全体员工月收入水平。20.(6分)解方程:x-1x-2-421.(6分)某校学生会调查了八年级部分学生对“垃圾分类”的了解程度(1)在确定调查方式时,学生会设计了以下三种方案,其中最具有代表性的方案是________;方案一:调查八年级部分男生;方案二:调查八年级部分女生;方案三:到八年级每个班去随机调查一定数量的学生.(2)学生会采用最具有代表性的方案进行调查后,将收集到的数据绘制成如下两幅不完整的统计图,如图①、图②.请你根据图中信息,回答下列问题:①本次调查学生人数共有_______名;②补全图①中的条形统计图,图②中了解一点的圆心角度数为_______;③根据本次调查,估计该校八年级500名学生中,比较了解“垃圾分类”的学生大约有_______名.22.(8分)某校八年级在一次广播操比赛中,三个班的各项得分如下表:服装统一动作整齐动作准确八(1)班808487八(2)班977880八(3)班907885(1)填空:根据表中提供的信息,在服装统一方面,三个班得分的平均数是_________;在动作准确方面最有优势的是_________班(2)如果服装统一、动作整齐、动作准确三个方面按20%、30%、50%的比例计算各班的得分,请通过计算说明哪个班的得分最高.23.(8分)如图,点E,F分别是锐角∠A两边上的点,AE=AF,分别以点E,F为圆心,以AE的长为半径画弧,两弧相交于点D,连接DE,DF.(1)请你判断所画四边形的性状,并说明理由;(2)连接EF,若AE=8厘米,∠A=60°,求线段EF的长.24.(8分)再读教材:宽与长的比是(约为0.618)的矩形叫做黄金矩形,黄金矩形给我们以协调,匀称的美感.世界各国许多著名的建筑.为取得最佳的视觉效果,都采用了黄金矩形的设计,下面我们用宽为2的矩形纸片折叠黄金矩形.(提示;MN=2)第一步,在矩形纸片一端.利用图①的方法折出一个正方形,然后把纸片展平.第二步,如图②.把这个正方形折成两个相等的矩形,再把纸片展平.第三步,折出内侧矩形的对角线AB,并把AB折到图③中所示的AD处,第四步,展平纸片,按照所得的点D折出DE,使DE⊥ND,则图④中就会出现黄金矩形,问题解决:(1)图③中AB=________(保留根号);(2)如图③,判断四边形BADQ的形状,并说明理由;(3)请写出图④中所有的黄金矩形,并选择其中一个说明理由.(4)结合图④.请在矩形BCDE中添加一条线段,设计一个新的黄金矩形,用字母表示出来,并写出它的长和宽.25.(10分)解答题.某校学生积极为地震灾区捐款奉献爱心.小颖随机抽查其中30名学生的捐款情况如下:(单位:元)2、5、35、8、5、10、15、20、15、5、45、10、2、8、20、30、40、10、15、15、30、15、8、25、25、30、15、8、10、1.(1)这30名学生捐款的最大值、最小值、极差、平均数各是多少?(2)将30名学生捐款额分成下面5组,请你完成频数统计表:(3)根据上表,作出频数分布直方图.26.(10分)如图,直线与直线交于点A,点A的横坐标为,且直线与x轴交于点B,与y轴交于点D,直线与y轴交于点C.(1)求点A的坐标及直线的函数表达式;(2)连接,求的面积.
参考答案一、选择题(每小题3分,共30分)1、B【解析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A、了解我省初中学生的家庭作业时间,适合抽样调查,故此选项错误;
B、了解“嫦娥三号”卫星零部件的状况,适合用普查,符合题意;
C、华为公司一批某型号手机电池的使用寿命,适合抽样调查,故此选项错误;
D、了解某市居民对废电池的处理情况,适合抽样调查,故此选项错误;
故选:B.【点睛】本题考查抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2、D【解析】
根据最简二次根式具备的条件:被开方数不含分母,被开方数中不含能开得尽方的因数或因式,逐一进行判断即可得出答案.【详解】A,,不是最简二次根式,故错误;B,,不是最简二次根式,故错误;C,,不是最简二次根式,故错误;D,是最简二次根式,故正确;故选:D.【点睛】本题主要考查最简二次根式,掌握最简二次根式具备的条件是解题的关键.3、A【解析】
根据多边形的内角和公式(n-2)•180°与外角和定理列出方程,然后求解即可.【详解】设这个多边形是n边形,根据题意得,(n﹣2)•180°=5×360°,解得n=1.故选:A.【点睛】本题考查了多边形的内角和公式与外角和定理,熟练掌握多边形的内角和公式与外角和定理是解题的关键.4、C【解析】
满足下列两个条件的二次根式,叫做最简二次根式:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式.【详解】A、=,故A不是;B、=,故B不是;C、,是;D、=,故D不是.故选C【点睛】考查了最简二次根式的概念,熟练掌握最简二次根式所需要满足的条件是解题的关键.5、C【解析】
根据不等式的性质逐个判断即可.(1不等式两边同时加或减去同一个整式,不等号方向不变;2不等式两边同时乘以(或除以)同一个大于0的整式,不等号方向不变;3不等式两边同时乘以(或除以)同一个小于0的整式,不等号方向改变.)【详解】根据a>b可得A错误,a+3>b+3B错误,a-4>b-4C正确.D错误,故选C.【点睛】本题主要考查不等式的性质,属于基本知识,应当熟练掌握.6、B【解析】
根据题意画出图形,根据三角形的面积公式即可得出S关于y的函数关系式,由函数关系式及点P在第一象限即可得出x的值,即可解答【详解】△OPA的面积为S==12,所以,y=4,由x+y=8,得x=4,所以,P(4,4),选B。【点睛】此题考查坐标与图形性质,解题关键在于得出x的值7、A【解析】分析:根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.详解:∵S甲2=1.4,S乙2=11.1,S丙2=25,∴S甲2<S乙2<S丙2,∴游客年龄最相近的团队是甲.故选A.点睛:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.8、D【解析】
根据合并同类项,积的乘方,完全平方公式,二次根式加减的运算法则逐一判断得出答案.【详解】解:A.7a与2b不是同类项,不能合并,故错误;B.,故错误;C.,故错误;D.,故正确.故选:D.【点睛】本题考查了整式的运算以及二次根式的加减,熟记法则并根据法则计算是解题关键.9、C【解析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与另一个的图形重合,那么这两个图形关于这个点成中心对称.根据中心对称的定义可知,图(2)(3)(4)成中心对称,由3组,故选C.10、A【解析】
试题分析:连接平行四边形的一条对角线,根据中位线定理,可得新四边形的一组对边平行且等于对角线的一半,即一组对边平行且相等.则新四边形是平行四边形.解:顺次连接平行四边形ABCD各边中点所得四边形必定是:平行四边形,理由如下:(如图)根据中位线定理可得:GF=BD且GF∥BD,EH=BD且EH∥BD,∴EH=FG,EH∥FG,∴四边形EFGH是平行四边形.故选A.考点:中点四边形.二、填空题(每小题3分,共24分)11、假设在直角三角形中,两个锐角都大于45°.【解析】
反证法的第一步是假设命题的结论不成立,据此可以得出答案.【详解】∵反证法的第一步是假设命题的结论不成立,∴用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”时第一步即为,假设在直角三角形中,两个锐角都大于45°.【点睛】此题主要考查了反证法的知识,解此题的关键是掌握反证法的意义和步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)由矛盾说明假设错误,从而证明原命题正确.12、【解析】【分析】作DE⊥BC,先证四边形ABED是矩形,得AD=BE=3,AB=DE,再根据等边三角形性质得到BC=2BE=6,∠BDE=60°,再利用勾股定理可求得高,再运用梯形面积计算公式可求得结果.【详解】作DE⊥BC,因为四边形ABCD的直角梯形,,,所以,四边形ABED是矩形,所以,AD=BE=3,AB=DE,又因为,三角形BCD是等边三角形,所以,BC=2BE=6,∠BDE=60°,所以,在直角三角形BED中,BD=BC=6,由勾股定理可得DE=,所以,AB=DE=所以,梯形ABCD的面积是:故答案为:【点睛】本题考核知识点:直角梯形.解题关键点:作辅助线,把问题转化为直角三角形解决.13、【解析】过点D作DE⊥DP交BC的延长线于E,先判断出四边形DPBE是矩形,再根据等角的余角相等求出∠ADP=∠CDE,再利用“角角边”证明△ADP和△CDE全等,根据全等三角形对应边相等可得DE=DP,然后判断出四边形DPBE是正方形,再根据正方形的面积公式解答即可.解:如图,过点D作DE⊥DP交BC的延长线于E,
∵∠ADC=∠ABC=90°,
∴四边形DPBE是矩形,
∵∠CDE+∠CDP=90°,∠ADC=90°,
∴∠ADP+∠CDP=90°,
∴∠ADP=∠CDE,
∵DP⊥AB,
∴∠APD=90°,
∴∠APD=∠E=90°,
在△ADP和△CDE中,∠ADP=∠CDE,∠APD=∠E,AD=CD,∴△ADP≌△CDE(AAS),
∴DE=DP,四边形ABCD的面积=四边形DPBE的面积=18,
∴矩形DPBE是正方形,
∴DP=.
故答案为3.“点睛”本题考查了正方形的判定与性质,全等三角形的判定与性质,熟记各性质并作辅助线构造出全等三角形和正方形是解题的关键.14、75°、75°或30°、120°.【解析】
分为两种情况讨论,①30°是顶角;②30°是底角;结合三角形内角和定理计算即可【详解】①30°是顶角,则底角=(180°﹣30°)=75°;②30°是底角,则顶角=180°﹣30°×2=120°.∴另两个角的度数分别是75°、75°或30°、120°.故答案是75°、75°或30°、120°.【点睛】此题考查等腰三角形的性质,难度不大15、1【解析】
设宽为xcm,根据矩形的面积=长×宽列出方程解答即可.【详解】解:设宽为xcm,依题意得:
x(x+1)=132,
整理,得
(x+1)(x-11)=0,
解得x1=-1(舍去),x2=11,
则x+1=1.
答:矩形的长是1cm.【点睛】本题考查了根据实际问题列出一元二次方程的知识,列一元二次方程的关键是找到实际问题中的相等关系.16、-3【解析】
根据“同大取大”的法则列出关于m的不等式,求出m的取值范围即可.【详解】解:∵m+2>m-1又∵不等式组的解集是x>-1,∴m+2=-1,∴m=-3,故答案为:-3.【点睛】本题考查了解一元一次不等式组,掌握“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则解答即可.17、10,3.【解析】
过点D作DG⊥BC于点G,根据四边形BDCE是菱形可知BD=CD,可得出△BCD是等腰三角形,即可得到CG=12BC,再根据勾股定理求出【详解】过点D作DG⊥BC于点G,∵四边形BDCE是菱形,∴BD=CD,∴△BCD是等腰三角形,∴点G是BC的中点,∴CG=1∴GD=C∵四边形ABCD是正方形,∴AB=BC=6,6+4=10,∴D10,3故答案为:10,3.【点睛】本题考查的是正方形的性质,根据题意作出辅助线,利用菱形的性质判断出△BCD是等腰三角形是解题的关键.18、2.10【解析】由题意可知,将木块展开,
相当于是AB+2个正方形的宽,
∴长为2+0.2×2=2.4米;宽为1米.
于是最短路径为:故答案是:2.1.三、解答题(共66分)19、(1)平均数:6150元;中位数:3200元;(2)甲:由样本平均数为6150元,估计全体员工的月平均收入大约为6150元;乙:由样本中位数为3200元,估计全体大约有一半的员工月收入超过3200元,有一半员工月收入不足3200元,乙推断比较科学合理.【解析】
(1)要求平均数只要求出各个数据之和再除以数据个数即可;对于中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可;
(2)甲从员工平均工资水平的角度推断公司员工月收入,乙从员工中间工资水平的角度推断公司员工的收入,乙推断比较科学合理.【详解】解:(1)样本的平均数为:=6150元;这组数据共有26个,第13、14个数据分别是3000、3400,所以样本的中位数为:3200元;(2)甲:由样本平均数为6150元,估计全体员工的月平均收入大约为6150元;乙:由样本中位数为3200元,估计全体大约有一半的员工月收入超过3200元,有一半员工月收入不足3200元,乙推断比较科学合理.故答案为:(1)平均数:6150元;中位数:3200元;(2)甲:由样本平均数为6150元,估计全体员工的月平均收入大约为6150元;乙:由样本中位数为3200元,估计全体大约有一半的员工月收入超过3200元,有一半员工月收入不足3200元,乙推断比较科学合理.【点睛】本题考查计算平均数和中位数,并用中位数和平均数说明具体问题.20、x=-1【解析】
方程两边同时乘以最简公分母x2-4,把分式方程转化为整式方程求解.【详解】解:方程两边都乘以(x+2)(x-2)得:(x-1)(x+2)-4=2(x+2)(x-2),即x2-x-2=0,解得:x=-1或2,检验:当x=-1时,(x+2)(x-2)≠0,所以x=-1是原方程的解,当x=2时,(x+2)(x-2)=0,所以x=2不是原方程的解,所以原方程组的解为:x=-1.故答案为:x=-1.【点睛】本题考查了解分式方程.21、(1)方案三;(2)①120;②216;③150.【解析】
(1)由于学生总数比较多,采用抽样调查方式,方案一、方案二只涉及到男生和女生一个方面,过于片面,所以应选方案三;(2)①由不了解的人数和所占的比例可得出调查总人数;②先求出了解一点的人数和所占比例,再用360°乘以这个比例可得圆心角度数;③用八年级学生人数乘以比较了解“垃圾分类”的学生比例可得答案。【详解】解:(1)方案一、方案二只涉及到男生和女生一个方面,过于片面,所以应选方案三;(2)①不了解的有12人,占10%,所以本次调查学生人数共有12÷10%=120名;②了解一点的人数是120-12-36=72人,所占比例为,所以了解一点的圆心角度数为360°×60%=216°,补全的图形如下图故答案为:216;③500×=150名故答案为:150【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.22、(1)89;八(1);(2)八(1)班得分最高.【解析】
(1)用算术平均数的计算方法求得三个班的服装统一的平均数,找到动作准确的分数最高即可;(2)利用加权平均数分别计算三个班的得分后即可得解.【详解】解:(1)服装统一方面的平均分为:=89分;动作准确方面最有优势的是八(1)班;故答案为:89;八(1);(2)∵八(1)班的平均分为:=84.7分;八(2)班的平均分为:=82.8分;八(3)班的平均分为:=83.9分;∴得分最高的是八(1)班.【点睛】本题考查了平均数和加权平均数的计算.要注意,当所给数据有单位时,所求得的平均数与原数据的单位相同,不要漏单位.23、(1)详见解析(2)EF=8【解析】
(1)由AE=AF=ED=DF,根据四条边都相等的四边形是菱形,即可证得:四边形AEDF是菱形,(2)首先连接EF,由AE=AF,∠A=60°,可证得△EAF是等边三角形,则可求得线段EF的长.【详解】解:(1)菱形,理由如下:∵根据题意得:AE=AF=ED=DF,∴四边形AEDF是菱形;(2)连接EF,∵AE=AF,∠A=60°,∴△EAF是等边三角形,∴EF=AE=8厘米.24、(1);(2)见解析;(3)见解析;(4)见解析.【解析】分析:(1)由勾股定理计算即可;(2)根据菱形的判定方法即可判断;(3)根据黄金矩形的定义即可判断;(4)如图④﹣1中,在矩形BCDE上添加线段GH,使得四边形GCDH为正方形,此时四边形BGHE为所求是黄金矩形.详解:(1)如图3中.在Rt△ABC中,AB===.故答案为.(2)结论:四边形BADQ是菱形.理由如下:如图③中,∵四边形ACBF是矩形,∴BQ∥AD.∵AB∥DQ,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 劳动合同变更指南
- 临时艺术工作室租赁合同
- 保障性住房管桩施工合同
- 建筑设计杂工临时合同
- 农业土地租赁合同:种植园合作
- 建筑智能化预付款担保合同
- 农业科技园钢筋施工合同
- 环保工程水暖系统施工协议
- 电竞比赛导演聘用协议
- 地铁站内部油工施工合同
- 课题开题汇报(省级课题)
- 清真食品安全管理制度
- 学校心理健康教育合作协议书
- 2024江苏省沿海开发集团限公司招聘23人(高频重点提升专题训练)共500题附带答案详解
- 2024年初级社会体育指导员(游泳)技能鉴定考试题库(含答案)
- 湖北省危险废物监管物联网系统管理计划填报说明
- Unit6ADayintheLife教学设计2024-2025学年人教版(2024)英语七年级上册
- 苏教版三年级上册数学期末考试试卷及解析答案
- 2024年个人劳务承包合同书
- 知道网课智慧《睡眠医学(广州医科大学)》测试答案
- 如果历史是一群喵课件
评论
0/150
提交评论