2024年山东省德州市名校数学八年级下册期末学业水平测试模拟试题含解析_第1页
2024年山东省德州市名校数学八年级下册期末学业水平测试模拟试题含解析_第2页
2024年山东省德州市名校数学八年级下册期末学业水平测试模拟试题含解析_第3页
2024年山东省德州市名校数学八年级下册期末学业水平测试模拟试题含解析_第4页
2024年山东省德州市名校数学八年级下册期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年山东省德州市名校数学八年级下册期末学业水平测试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.已知关于的一元二次方程有两个实数根,.则代数式的值为()A.10 B.2 C. D.2.下列命题中,真命题是()A.两条对角线相等的四边形是矩形;B.两条对角线互相垂直的四边形是菱形;C.两条对角线互相垂直且相等的四边形是正方形;D.两条对角线相等的梯形是等腰梯形3.下列平面图形中,不是轴对称图形的是()A. B. C. D.4.如图,正比例函数y=x与反比例y=的图象相交于A、C两点,AB⊥x轴于B,CD⊥x轴于D,则四边形ABCD的面积为()A.1 B. C.2 D.5.若(x+y)3-xy(x+y)=(x+y)·M(x+y≠0),则M是()A.x2+y2B.x2-xy+y2C.x2-3xy+y2D.x2+xy+y26.已知n是自然数,是整数,则n最小为()A.0 B.2 C.4 D.407.已知A样本的数据如下:72,73,76,76,77,78,78,78,B样本的数据恰好是A样本数据每个都加2,则A,B两个样本的下列统计量对应相同的是()A.平均数 B.标准差 C.中位数 D.众数8.如图,在同一直角坐标系中,函数和的图象相交于点A,则不等式的解集是A. B. C. D.9.下列事件中,是必然事件的是()A.3天内下雨 B.打开电视机,正在播放广告C.367人中至少有2人公历生日相同 D.a抛掷1个均匀的骰子,出现4点向上10.下列图形既是轴对称图形,又是中心对称图形的是()A.三角形B.菱形C.角D.平行四边形二、填空题(每小题3分,共24分)11.若实数a、b满足a2—7a+2=0和b2—7b+2=0,则式子的值是____.12.如图,正方形A1B1C1O,A2B2C2C1,A3B3C3C2,……,按如图的方式放置.点A1,A2,A3,……和点C1,C2,C3……分别在直线y=x+1和x轴上,则点A6的坐标是____________.13.如图,B、E、F、D四点在同一条直线上,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长为_____cm.14.如图,直线与轴交于点,依次作正方形、正方形、……正方形,使得点、…,在直线上,点在轴上,则点的坐标是________15.如图,在平面直角坐标系中,点A(0,4),B(3,0),连接AB,将△AOB沿过点B的直线折叠,使点A落在x轴上的点A′处,折痕所在的直线交y轴正半轴于点C,则直线BC的解析式为.16.如图,Rt△ABC中,∠C=90°,AC=BC,∠BAC的平分线AD交BC于点D,分别过点A作AE∥BC,过点B作BE∥AD,AE与BE相交于点E.若CD=2,则四边形ADBE的面积是_____.17.计算:=________.18.如图,菱形的对角线、相交于点,过点作直线分别与、相交于、两点,若,,则图中阴影部分的面积等于______.三、解答题(共66分)19.(10分)垃圾分类有利于对垃圾进行分流处理,能有效提高垃圾的资源价值和经济价值,力争物尽其用,为了了解同学们对垃圾分类相关知识的掌握情况,增强同学们的环保意识,某校对本校甲、乙两班各60名学生进行了垃极分类相关知识的测试,并分别随机抽取了15份成绩,整理分析过程如下,请补充完整(收集数据)甲班15名学生测试成绩统计如下:(满分100分)68,72,89,85,82,85,74,92,80,85,78,85,69,76,80乙班15名学生测试成绩统计如下:(满分100分)86,89,83,76,73,78,67,80,80,79,80,84,82,80,83(整理数据)按如下分数段整理、描述这两组样本数据组别班级65.6~70.570.5~75.575.5~80.580.5~85.585.5~90.590.5~95.5甲班224511乙班11ab20在表中,a=,b=.(分析数据)(1)两组样本数据的平均数、众数、中位数、方差如下表所示:班级平均数众数中位数方差甲班80x8047.6乙班8080y26.2在表中:x=,y=.(2)若规定得分在80分及以上(含80分)为合格,请估计乙班60名学生中垃圾分类相关知识合格的学生有人(3)你认为哪个班的学生掌握垃圾分类相关知识的情况较好,说明理由.20.(6分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).①把△ABC向上平移5个单位后得到对应的△A1B1C1,画出△A1B1C1,并写出C1的坐标;②以原点O为对称中心,画出△ABC与关于原点对称的△A2B2C2,并写出点C2的坐标;③以原点O为旋转中心,画出把△ABC顺时针旋转90°的图形△A3B3C3,并写出C3的坐标.21.(6分)在平面直角坐标系中,直线l经过点A(﹣1,﹣4)和B(1,0),求直线l的函数表达式.22.(8分)我们知道:等腰三角形两腰上的高相等.(1)请你写出它的逆命题:______.(2)逆命题是真命题吗?若是,请证明;若不是,请举出反例(要求:画出图形,写出已知,求证和证明过程).23.(8分)一次函数分别交x轴、y轴于点A、B,画图并求线段AB的长.24.(8分)如图,已知反比例函数y1=kx的图象与一次函数:y2=ax+b的图象相交于点A(1,4)、B(m,﹣2(1)求出反比例函数和一次函数的关系式;(2)观察图象,直按写出使得y1<y2成立的自变量x的取值范围;(3)如果点C是x轴上的点,且△ABC的面积面积为6,求点C的坐标.25.(10分)已知:在中,对角线、交于点,过点的直线交于点,交于点.求证:,.26.(10分)无锡阳山水蜜桃上市后,甲、乙两超市分别用60000元以相同的进价购进相同箱数的水蜜桃,甲超市销售方案是:将水蜜桃按分类包装销售,其中挑出优质大个的水蜜桃400箱,以进价的2倍价格销售,剩下的水蜜桃以高于进价10%销售.乙超市的销售方案是:不将水蜜桃分类,直接销售,价格按甲超市分类销售的两种水蜜桃售价的平均数定价.若两超市将水蜜桃全部售完,其中甲超市获利42000元(其它成本不计).问:(1)水蜜桃进价为每箱多少元?(2)乙超市获利多少元?哪种销售方式更合算?

参考答案一、选择题(每小题3分,共30分)1、B【解析】

先由根与系数的关系得到关于的方程组,代入直接求值即可.【详解】解:因为有两个实数根,,所以所以,解得:,所以,故选B.【点睛】本题考查的是一元二次方程的根与系数的关系,方程组的解法及代数式的求值,掌握相关的知识点是解题关键.2、D【解析】

A、根据矩形的判定定理作出分析、判断;

B、根据菱形的判定定理作出分析、判断;

C、根据正方形的判定定理作出分析、判断;

D、根据等腰梯形的判定定理作出分析、判断.【详解】解:A、两条对角线相等的四边形不一定是矩形.例如等腰梯形的两条对角线也相等;故本选项错误;

B、两条对角线垂直的平行四边形是菱形;故本选项错误;

C、两条对角线垂直且相等的四边形也可能是等腰梯形;故本选项错误;

D、两条对角线相等的梯形是等腰梯形,此说法正确;故本选项正确;

故选:D.【点睛】本题综合考查了等腰梯形、正方形菱形以及矩形的判定.解答该题时,需要牢记常见的四边形的性质.3、A【解析】试题分析:根据轴对称图形的定义作答.如果把一个图形沿着一条直线翻折过来,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.解:根据轴对称图形的概念,可知只有A沿任意一条直线折叠直线两旁的部分都不能重合.故选A.考点:轴对称图形.4、C【解析】

首先根据反比例函数图像上的点与原点所连的线段、坐标轴、向坐标轴做垂线所围成的直角三角形面积S的关系即S=,得出,再根据反比例函数的对称性可知:OB=OD,得出得出结果.【详解】解:根据反比例函数得对称性可知:OB=OD,AB=CD,∵四边形ABCD的面积等于,又∴S四边形ABCD=2.故答案选:C.【点睛】本题考查的是一次函数与反比例函数的交点问题,解题关键是熟知反比例函数中的几何意义,即图像上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积的关系即.5、D【解析】分析:运用提公因式法将等式左边的多项式进行因式分解即可求解.详解:(x+y)3-xy(x+y)=(x+y)[(x+y)2-xy]=(x+y)(x2+xy+y2)=(x+y)·M∴M=x2+xy+y2故选D.点睛:此题主要考查了提取公因式法的应用以及完全平方公式的应用,正确运用(x+y)2=x2+2xy+y2是解题关键.6、C【解析】

求出n的范围,再根据是整数得出(211-n)是完全平方数,然后求满足条件的最小自然数是n.【详解】解:∵n是自然数,是整数,且211-n≥1.

∴(211-n)是完全平方数,且n≤211.

∴(211-n)最大平方数是196,即n=3.

故选:C.【点睛】主要考查了乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数.二次根式的运算法则:乘法法则=.除法法则=.解题关键是分解成一个完全平方数和一个代数式的积的形式.7、B【解析】试题分析:根据样本A,B中数据之间的关系,结合众数,平均数,中位数和标准差的定义即可得到结论:设样本A中的数据为xi,则样本B中的数据为yi=xi+2,则样本数据B中的众数和平均数以及中位数和A中的众数,平均数,中位数相差2,只有标准差没有发生变化.故选B.考点:统计量的选择.8、C【解析】

先利用得到,再求出m得到,接着求出直线与x轴的交点坐标为,然后写出直线在x轴上方和在直线下方所对应的自变量的范围.【详解】当时,,则,把代入y2得,解得,所以,解方程,解得,则直线与x轴的交点坐标为,所以不等式的解集是,故选C.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数的值大于或小于的自变量x的取值范围;从函数图象的角度看,就是确定直线在x轴上或下方部分所有的点的横坐标所构成的集合.9、C【解析】

根据随机事件和必然事件的定义分别进行判断.【详解】A.3天内会下雨为随机事件,所以A选项错误;B.打开电视机,正在播放广告,是随机事件,所以B选项错误;C.367人中至少有2人公历生日相同是必然事件,所以C选项正确;D.a抛掷1个均匀的骰子,出现4点向上,是随机事件,所以D选项错误.故选C.【点睛】此题考查随机事件,解题关键在于掌握其定义.10、B【解析】【分析】根据轴对称图形与中心对称图形的概念进行求解即可.【详解】A、三角形不一定是轴对称图形和中心对称图形,故本选项错误;B、菱形既是轴对称图形又是中心对称图形,故本选项正确;C、角是轴对称图形但不一定是中心对称图形,故本选项错误;D、平行四边形是中心对称图形但不一定是轴对称图形,故本选项错误,故选B.【点睛】本题主要考查了中心对称图形与轴对称图形的概念:判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.二、填空题(每小题3分,共24分)11、.【解析】

由实数a,b满足条件a2-7a+2=0,b2-7b+2=0,可把a,b看成是方程x2-7x+2=0的两个根,再利用根与系数的关系求解即可.【详解】解:由实数a,b满足条件a2-7a+2=0,b2-7b+2=0,∴可把a,b看成是方程x2-7x+2=0的两个根,∴a+b=7,ab=2,∴===.故答案为:.【点睛】本题考查了根与系数的关系,属于基础题,根据题意把a,b看成是方程的两个根后根据根与系数的关系求出a+b,ab是解题的关键.12、(31,32)【解析】分析:由题意结合图形可知,从左至右的第1个正方形的边长是1,第2个正方形的边长是2,第3个正方形的边长是4,……,第n个正方形的边长是,由此可得点An的纵坐标是,根据点An在直线y=x+1上可得点An的横坐标为,由此即可求得A6的坐标了.详解:由题意结合图形可知:从左至右的第1个正方形的边长是1,第2个正方形的边长是2,第3个正方形的边长是4,……,第n个正方形的边长是,∵点An的纵坐标是第n个正方形的边长,∴点An的纵坐标为,又∵点An在直线y=x+1上,∴点An的横坐标为,∴点A6的横坐标为:,点A6的纵坐标为:,即点A6的坐标为(31,32).故答案为:(31,32).点睛:读懂题意,“弄清第n个正方形的边长是,点An的纵坐标与第n个正方形边长间的关系”是解答本题的关键.13、1.【解析】

根据正方形的面积可用对角线进行计算解答即可.【详解】解:连接AC,BD交于点O,∵B、E、F、D四点在同一条直线上,∴E,F在BD上,∵正方形AECF的面积为50cm2,∴AC2=50,AC=10cm,∵菱形ABCD的面积为120cm2,∴=120,BD=24cm,所以菱形的边长AB==1cm.故答案为:1.【点睛】此题考查正方形的性质,关键是根据正方形和菱形的面积进行解答.14、(22019-1,22018)【解析】

先求出直线y=x+1与y轴的交点坐标即可得出A1的坐标,故可得出OA1的长,根据四边形A1B1C1O是正方形即可得出B1的坐标,再把B1的横坐标代入直线y=x+1即可得出A1的坐标,同理可得出B2,B3的坐标,可以得到规律:Bn(2n-1,2n-1),据此即可求解点B2019的坐标.【详解】解:∵令x=0,则y=1,

∴A1(0,1),

∴OA1=1.

∵四边形A1B1C1O是正方形,

∴A1B1=1,

∴B1(1,1).

∵当x=1时,y=1+1=2,

∴B2(3,2);

同理可得,B3(7,4);

∴B1的纵坐标是:1=20,B1的横坐标是:1=21-1,

∴B2的纵坐标是:2=21,B2的横坐标是:3=22-1,

∴B3的纵坐标是:4=22,B3的横坐标是:7=23-1,

∴Bn的纵坐标是:2n-1,横坐标是:2n-1,

则Bn(2n-1,2n-1),

∴点B2019的坐标是(22019-1,22018).

故答案为:(22019-1,22018).【点睛】本题考查一次函数图象上点的坐标特征、正方形的性质和坐标的变化规律.此题难度较大,注意正确得到点的坐标的规律是解题关键.15、y=﹣x+【解析】

在Rt△OAB中,OA=4,OB=3,用勾股定理计算出AB=5,再根据折叠的性质得BA′=BA=5,CA′=CA,则OA′=BA′﹣OB=2,设OC=t,则CA=CA′=4﹣t,在Rt△OA′C中,根据勾股定理得到t2+22=(4﹣t)2,解得t=,则C点坐标为(0,),然后利用待定系数法确定直线BC的解析式【详解】解:∵A(0,4),B(3,0),∴OA=4,OB=3,在Rt△OAB中,AB==5,∵△AOB沿过点B的直线折叠,使点A落在x轴上的点A′处,∴BA′=BA=5,CA′=CA,∴OA′=BA′﹣OB=5﹣3=2,设OC=t,则CA=CA′=4﹣t,在Rt△OA′C中,∵OC2+OA′2=CA′2,∴t2+22=(4﹣t)2,解得t=,∴C点坐标为(0,),设直线BC的解析式为y=kx+b,把B(3,0)、C(0,)代入得,解得∴直线BC的解析式为y=﹣x+故答案为y=﹣x+.【考点】翻折变换(折叠问题);待定系数法求一次函数解析式.16、【解析】

过D作DF⊥AB于F,根据角平分线的性质得出DF=CD=2.由△ABC是等腰直角三角形得出∠ABC=45°,再证明△BDF是等腰直角三角形,求出BD=DF=2,BC=2+2=AC.易证四边形ADBE是平行四边形,得出AE=BD=2,然后根据平行四边形ADBE的面积=BDAC,代入数值计算即可求解.【详解】解:如图,过D作DF⊥AB于F,∵AD平分∠BAC,∠C=90°,∴DF=CD=2.∵Rt△ABC中,∠C=90°,AC=BC,∴∠ABC=45°,∴△BDF是等腰直角三角形,∵BF=DF=2,BD=DF=2,∴BC=CD+BD=2+2,AC=BC=2+2.∵AE//BC,BE⊥AD,∴四边形ADBE是平行四边形,∴AE=BD=2,∴平行四边形ADBE的面积=.故答案为.【点睛】本题考查了平行四边形的判定与性质,等腰直角三角形的判定与性质,角平分线的性质,平行四边形的面积.求出BD的长是解题的关键.17、﹣1【解析】

利用二次根式的性质将二次根式化简得出即可.【详解】解:=|1-|=﹣1.

故答案为:﹣1.【点睛】本题考查二次根式的化简求值,正确化简二次根式是解题关键.18、【解析】

根据菱形的性质可证≌,可将阴影部分面积转化为△AOB的面积,根据菱形的面积公式计算即可.【详解】四边形是菱形∴OC=OA,AB∥CD,∴∴≌(ASA)∴S△CFO=S△AOE∴S△CFO+S△EBO=S△AOB∴S△AOB=SABCD=×故答案为:.【点睛】此题考查了菱形的性质,菱形的面积公式,全等三角形的判定,将阴影部分的面积转化为三角形AOB的面积为解题的关键.三、解答题(共66分)19、【整理数据】:7,4;【分析数据】(1)85,80;(2)40;(3)乙班的学生掌握垃圾分类相关知识的整体水平较好,见解析.【解析】

由收集的数据即可得;(1)根据众数和中位数的定义求解可得;(2)用总人数乘以乙班样本中合格人数所占比例可得;(3)甲、乙两班的方差判定即可.【详解】解:乙班75.5~80.5分数段的学生数为7,80.5~85.5分数段的学生数为4,故a=7,b=4,故答案为:7,4;(1)68,72,89,85,82,85,74,92,80,85,78,85,69,76,80,众数是x=85,67,73,76,78,79,80,80,80,80,82,83,83,84,86,89,中位数是y=80,故答案为:85,80;(2)60×=40(人),即合格的学生有40人,故答案为:40;(3)乙班的学生掌握垃圾分类相关知识的整体水平较好,∵甲班的方差>乙班的方差,∴乙班的学生掌握垃圾分类相关知识的整体水平较好.【点睛】本题考查了频数分布直方图,众数,中位数,正确的理解题意是解题的关键.20、(1)作图见解析,(4,4);(2)作图见解析,(-4,1);(3)作图见解析;(-1,-4).【解析】试题分析:(1)将A、B、C按平移条件找出它的对应点,顺次连接,即得到平移后的图形;(2)利用关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分,分别找出A、B、C的对应点,顺次连接,即得到相应的图形;(3)利用对应点到旋转中心的距离相等,以及对应点与旋转中心所连线段的夹角等于旋转角,即可作出判断.试题解析:(1)如图所示:C1的坐标为:(4,4);(2)如图所示:C2的坐标为:(-4,1);(3)如图所示:C3的坐标为:(-1,-4).考点:1.作图-旋转变换;2.作图-平移变换.21、y=2x-2.【解析】

根据待定系数法,可得一次函数解析式.【详解】解:设直线l的表达式为y=kx+b(k≠0),依题意,得-k+b=-4解得:k=2b=-2所以直线l的表达式为y=2x-2.【点睛】本题考查了待定系数法求一次函数的解析式,熟练掌握待定系数法是解题关键.22、(1)两边上的高相等的三角形是等腰三角形;(2)是,证明见解析.【解析】

(1)根据逆命题的定义即可写出结论;(2)根据题意,写出已知和求证,然后利用HL证出Rt△BCD≌Rt△CBE,从而得出∠ABC=∠ACB,然后根据等角对等边即可证出结论.【详解】(1)等腰三角形两腰上的高相等的逆命题是两边上的高相等的三角形是等腰三角形,故答案为:两边上的高相等的三角形是等腰三角形;(2)如图,已知CD和BE是AB和AC边上的高,CD=BE,求证:AB=AC;证明:如图,在△ABC中,BE⊥AC,CD⊥AB,且BE=CD.∵BE⊥AC,CD⊥AB,∴∠CDB=∠BEC=90°,在Rt△BCD与Rt△CBE中,,∴Rt△BCD≌Rt△CBE(HL),∴∠ABC=∠ACB,∴AB=AC,即△ABC是等腰三角形.【点睛】此题考查的是写一个命题的逆命题、全等三角形的判定及性质和等腰三角形的性质,掌握逆命题的定义、全等三角形的判定及性质和等角对等边是解决此题的关键.23、AB=.【解析】

先求A,B的坐标,再画图象,由勾股定理可求解.【详解】解:因为当x=0时,y=2;当y=0时,x=1,所以,与x轴的交点A(1,0),与y轴的交点B(0,2),所以,线段AB的图象是所以,AB=故答案为如图,【点睛】本题考核知识点:一次函数的图象.解题关键点:确定点A,B的坐标,由勾股定理求AB.24、(1)反比例函数的解析式为y1=4x,一次函数的解析式为y1=1x+1;(1)﹣1<x<0或x>1;(3)C的坐标(1,0)或(﹣3,0【解析】

(1)根据待定系数法,可得函数解析式;(1)根据一次函数图象在上方的部分是不等式的解,可得答案;(3)根据面积的和差,可得答案.【详解】(1)∵函数y1=kx的图象过点A(1,4),即4=k∴k=4,即y1=4x又∵点B(m,﹣1)在y1=4x∴m=﹣1,∴B(﹣1,﹣1),又∵

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论