2024年山东省滨州市部分学校八年级数学第二学期期末检测试题含解析_第1页
2024年山东省滨州市部分学校八年级数学第二学期期末检测试题含解析_第2页
2024年山东省滨州市部分学校八年级数学第二学期期末检测试题含解析_第3页
2024年山东省滨州市部分学校八年级数学第二学期期末检测试题含解析_第4页
2024年山东省滨州市部分学校八年级数学第二学期期末检测试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年山东省滨州市部分学校八年级数学第二学期期末检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.已知,,是一次函数图象上不同的两个点,若,则的取值范围是()A. B. C. D.2.如图,分别以Rt△ABC的斜边AB,直角边AC为边向外作等边△ABD和△ACE,F为AB的中点,DE,AB相交于点G.连接EF,若∠BAC=30°,下列结论:①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④△DBF≌△EFA.则正确结论的序号是()A.①③ B.②④ C.①③④ D.②③④3.如图,以正方形ABCD的顶点A为坐标原点,直线AB为x轴建立直角坐标系,对角线AC与BD相交于点E,P为BC上一点,点P坐标为(a,b),则点P绕点E顺时针旋转90°得到的对应点P的坐标是()A.(a-b,a) B.(b,a) C.(a-b,0) D.(b,0)4.如图,矩形ABCD中,AB=8,BC=4,P,Q分别是直线AB,AD上的两个动点,点在边上,,将沿翻折得到,连接,,则的最小值为()A. B. C. D.5.计算(5﹣﹣2)÷(﹣)的结果为()A.﹣5 B.5 C.7 D.﹣76.如图,在Rt△ABC中,∠ACB=90°.AC=BC.边AC落在数轴上,点A表示的数是1,点C表示的数是3,负半轴上有一点B₁,且AB₁=AB,点B₁所表示的数是()A.-2 B.-2 C.2-1 D.1-27.如图,在边长为12的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长EF交BC于点G,则BG的长为()A.5 B.4 C.3 D.28.函数y=中,自变量的取值范围是().A. B. C.且 D.9.将一个有45°角的三角板的直角顶点放在一张宽为3cm的纸带边沿上,另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图(3),则三角板的最大边的长为()A. B. C. D.10.如图,将等边ABC向右平移得到DEF,其中点E与点C重合,连接BD,若AB=2,则线段BD的长为()A.2 B.4 C. D.2二、填空题(每小题3分,共24分)11.如图,是中边中点,,于,于,若,则__________.12.计算=__________.13.如图,在一次测绘活动中,某同学站在点A处观测停放于B、C两处的小船,测得船B在点A北偏东75°方向160米处,船C在点A南偏东15°方向120米处,则船B与船C之间的距离为________米.14.将一个矩形纸片按如图所示折叠,若,则的度数是______.15.方程的解是_______.16.如图,在Rt△ABC中,∠C=90°,AC=6,AB=10,点D、E、F是三边的中点,则△DEF的周长是______.17.学校校园歌手大奖赛共有12位选手入围,按成绩取前6位进入决赛.如果王晓鸥同学知道了自己的成绩,要判断能否进入决赛,用数据分析的观点看,她还需要知道的数据是这12位同学的___.18.如图,,、分别是、的中点,平分,交于点,若,,则的长是______.三、解答题(共66分)19.(10分)《九章算术》卷九“勾股”中记载:今有池方一丈,葭生其中央,出水一尺.引葭赴岸,适与岸齐.问霞长几何.注释:今有正方形水池边长1丈,芦苇生长在中央,长出水面1尺.将芦苇向池岸牵引,恰好与水岸齐,问芦苇的长度(一丈等于10尺).解决下列问题:(1)示意图中,线段的长为______尺,线段的长为______尺;(2)求芦苇的长度.20.(6分)如图,平行四边形中,,点、分别在、的延长线上,,,垂足为点,.(1)求证:是中点;(2)求的长.21.(6分)如图所示,有一长方形的空地,长为米,宽为米,建筑商把它分成甲、乙、丙三部分,甲和乙为正方形.现计划甲建筑成住宅区,乙建成商场丙开辟成公园.请用含的代数式表示正方形乙的边长;;若丙地的面积为平方米,请求出的值.22.(8分)给出三个多项式:,请选择两个多项式进行加法运算,并把结果分解因式(写出两种情况).23.(8分)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(小时),两车之间的距离为(千米),图中的折线表示与的函数关系.信息读取:(1)甲、乙两地之间的距离为__________千米;(2)请解释图中点的实际意义;图像理解:(3)求慢车和快车的速度;(4)求线段所示的与之间函数关系式.24.(8分)在某段限速公路BC上(公路视为直线),交通管理部门规定汽车的最高行驶速度不能超过60km/h(即),并在离该公路100m处设置了一个监测点A.在如图的平面直角坐标系中,点A位于y轴上,测速路段BC在x轴上,点B在点A的北偏西60°方向上,点C在点A的北偏东45°方向上.另外一条公路在y轴上,AO为其中的一段.(1)求点B和点C的坐标;(2)一辆汽车从点B匀速行驶到点C所用的时间是15s,通过计算,判断该汽车在这段限速路上是否超速.(参考数据:≈1.7)25.(10分)已知二次函数的最大值为4,且该抛物线与轴的交点为,顶点为.(1)求该二次函数的解析式及点,的坐标;(2)点是轴上的动点,①求的最大值及对应的点的坐标;②设是轴上的动点,若线段与函数的图像只有一个公共点,求的取值范围.26.(10分)如图,矩形ABCD中,AB=2,BC=5,E、P分别在AD.BC上,且DE=BP=1.连接BE,EC,AP,DP,PD与CE交于点F,AP与BE交于点H.(1)判断△BEC的形状,并说明理由;(2)判断四边形EFPH是什么特殊四边形,并证明你的判断;(3)求四边形EFPH的面积.

参考答案一、选择题(每小题3分,共30分)1、D【解析】

根据可得出与异号,进而得出,解之即可得出结论.【详解】,与异号,,解得:.故选:.【点睛】本题考查了一次函数的性质,熟练掌握“当时,随的增大而减小”是解题的关键.2、C【解析】

根据直角三角形斜边上的中线等于斜边的一半,可得FA=FC,根据等边三角形的性质可得EA=EC,根据线段垂直平分线的判定可得EF是线段AC的垂直平分线;根据条件及等边三角形的性质可得∠DFA=∠EAF=90°,DA⊥AC,从而得到DF∥AE,DA∥EF,可得到四边形ADFE为平行四边形而不是菱形;根据平行四边形的对角线互相平分可得AD=AB=2AF=4AG;易证DB=DA=EF,∠DBF=∠EFA=60°,BF=FA,即可得到△DBF≌△EFA.【详解】连接FC,如图所示:∵∠ACB=90°,F为AB的中点,∴FA=FB=FC,∵△ACE是等边三角形,∴EA=EC,∵FA=FC,EA=EC,∴点F、点E都在线段AC的垂直平分线上,∴EF垂直平分AC,即EF⊥AC;∵△ABD和△ACE都是等边三角形,F为AB的中点,∴DF⊥AB即∠DFA=90°,BD=DA=AB=2AF,∠DBA=∠DAB=∠EAC=∠ACE=60°.∵∠BAC=30°,∴∠DAC=∠EAF=90°,∴∠DFA=∠EAF=90°,DA⊥AC,∴DF∥AE,DA∥EF,∴四边形ADFE为平行四边形而不是菱形;∵四边形ADFE为平行四边形,∴DA=EF,AF=2AG,∴BD=DA=EF,DA=AB=2AF=4AG;在△DBF和△EFA中,BD=EF∠DBF=∠EFABF=FA∴△DBF≌△EFA(SAS);综上所述:①③④正确,故选:C.【点睛】本题主要考查了直角三角形斜边上的中线等于斜边的一半、等边三角形的性质、线段垂直平分线的判定、平行四边形判定与性质、全等三角形的判定与性质,解题关键在于作辅助线.3、D【解析】

如图,连接PE,点P绕点E顺时针旋转90°得到的对应点P′在x轴上,根据正方形的性质得到∠ABC=90°,∠AEB=90°,AE=BE,∠EAP′=∠EBP=45°,由点P坐标为(a,b),得到BP=b,根据全等三角形的性质即可得到结论.【详解】如图,连接PE,点P绕点E顺时针旋转90°得到的对应点P′在x轴上,∵四边形ABCD是正方形,∴∠ABC=90°,∴∠AEB=90°,AE=BE,∠EAP′=∠EBP=45°,∵点P坐标为(a,b),∴BP=b,∵∠PEP′=90°,∴∠AEP′=∠PEB,在△AEP′与△BEP中,∠EAP'=∠EBP∴△AEP′≌△BEP(ASA),∴AP′=BP=b,∴点P′的坐标是(b,0),故选:D.【点睛】此题考查全等三角形的判断与性质,正方形的性质,解题关键在于作辅助线.4、B【解析】

作点C关于AB的对称点H,连接PH,EH,由已知求出CE=6,CH=8,由勾股定理得出EH==10,由SAS证得△PBC≌△PBH,得出CP=PH,PF+PC=PF+PH,当E、F、P、H四点共线时,PF+PH值最小,即可得出结果.【详解】解:作点C关于AB的对称点H,连接PH,EH,如图所示:∵矩形ABCD中,AB=8,BC=4,DE=2,∴CE=CD−DE=AB−DE=6,CH=2BC=8,∴EH==10,在△PBC和△PBH中,,∴△PBC≌△PBH(SAS),∴CP=PH,∴PF+PC=PF+PH,∵EF=DE=2是定值,∴当E、F、P、H四点共线时,PF+PH值最小,最小值=10−2=8,∴PF+PD的最小值为8,故选:B.【点睛】本题考查翻折变换、矩形的性质、全等三角形的判定与性质、勾股定理等知识,解题的关键是学会利用轴对称,根据两点之间线段最短解决最短问题.5、C【解析】

先把二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算.【详解】解:原式=(﹣2﹣6)÷(﹣)=﹣1÷(﹣)=1.故选:C.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.6、D【解析】

先求出AC的长度,再根据勾股定理求出AB的长度,然后根据B1到原点的距离是2-1,即可得到点B1所表示的数.【详解】解:根据题意,AC=3-1=2,∵∠ACB=90°,AC=BC,∴,∴B1到原点的距离是2-1.又∵B′在原点左侧,∴点B1表示的数是1-2.故选D.【点睛】本题主要考查了实数与数轴,勾股定理,求出AB的长度是解题的关键.解题时注意实数与数轴上的点是一一对应关系.7、B【解析】分析:利用翻折变换对应边关系得出AB=AF,∠B=∠AFG=90°,利用HL定理得出△ABG≌△AFG即可;利用勾股定理得出GE2=CG2+CE2,进而求出BG即可;详解:在正方形ABCD中,AD=AB=BC=CD,∠D=∠B=∠BCD=90°,∵将△ADE沿AE对折至△AFE,∴AD=AF,DE=EF,∠D=∠AFE=90°,∴AB=AF,∠B=∠AFG=90°,又∵AG=AG,在Rt△ABG和Rt△AFG中,AG=AG,AB=AF,∴Rt△ABG≌Rt△AFG(HL),∴BG=GF,∵E是边CD的中点,∴DE=CE=6,设BG=x,则CG=12-x,GE=x+6,∵GE2=CG2+CE2,∴(x+6)2=(12-x)2+62,解得:x=1,∴BG=1.故选B.点睛:此题主要考查了全等三角形的判定和性质,勾股定理的综合应用以及翻折变换的性质,根据翻折变换的性质得出对应线段相等是解题关键.8、D【解析】解:根据题意得x-2≠0,解得x≠2.故选D.9、D【解析】分析:过另一个顶点C作垂线CD如图,可得直角三角形,根据直角三角形中30°角所对的边等于斜边的一半,可求出有45°角的三角板的直角直角边,再由等腰直角三角形求出最大边.解答:解:过点C作CD⊥AD,∴CD=3,在直角三角形ADC中,∵∠CAD=30°,∴AC=2CD=2×3=6,又三角板是有45°角的三角板,∴AB=AC=6,∴BC2=AB2+AC2=62+62=72,∴BC=故选D.10、D【解析】

过点D作DH⊥CF于H,由平移的性质可得△DEF是等边三角形,由等边三角形的性质可求CH=1,DH=,由勾股定理可求解.【详解】解:如图,过点D作DH⊥CF于H,∵将等边△ABC向右平移得到△DEF,∴△DEF是等边三角形,∴DF=CF=2,∠DFC=60°,∵DH⊥CF,∴∠FDH=30°,CH=HF=1,∴DH=HF=,BH=BC+CH=3,∴BD===2,故选:D.【点睛】本题主要考查勾股定理,平移的性质,等边三角形的性质,掌握这些性质是解题的关键.二、填空题(每小题3分,共24分)11、1【解析】

根据直角三角形斜边上的中线等于斜边的一半得出ED=BC,FD=BC,那么ED=FD,又∠EDF=60°,根据有一个角是60°的等腰三角形是等边三角形判定△EDF是等边三角形,从而得出ED=FD=EF=4,进而求出BC.【详解】解:∵D是△ABC中BC边中点,CE⊥AB于E,BF⊥AC于F,∴ED=BC,FD=BC,∴ED=FD,又∠EDF=60°,∴△EDF是等边三角形,∴ED=FD=EF=4,∴BC=2ED=1.故答案为1.【点睛】本题考查了直角三角形斜边上的中线的性质,等边三角形的判定与性质,判定△EDF是等边三角形是解题的关键.12、【解析】分析:先把各根式化简,然后进行合并即可得到结果.详解:原式==点睛:本题主要考查二次根式的加减,比较简单.13、1【解析】

根据已知条件得到∠BAC=90°,AB=160米,AC=120米,由勾股定理即可得到结论.【详解】解:根据题意得:∠BAC=90°,AB=160米,AC=120米,

在Rt△ABC中,BC===1米.

故答案为:1.【点睛】本题考查解直角三角形的应用-方向角问题,会识别方向角是解题的关键.14、40°【解析】

依据平行线的性质,即可得到,,进而得出,再根据进行计算即可.【详解】解:如图所示,,,,由折叠可得,,,故答案为:.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等;两直线平行,同旁内角互补.15、【解析】

观察可得最简公分母是,方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【详解】解:两边同时乘以得,,解得,,检验:当时,,不是原分式方程的解;当时,,是原分式方程的解.故答案为:.【点睛】本题考查了解分式方程:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.16、1【解析】

先根据勾股定理求出BC,再根据三角形中位线定理求出△DEF的三边长,然后根据三角形的周长公式计算即可.【详解】解:在Rt△ABC中,∵∠C=90°,AC=6,AB=10,∴BC==8,∵点D、E、F是三边的中点,∴DE=AC=3,DF=AB=5,EF=BC=4,∴△DEF的周长=3+4+5=1.故答案为:1.【点睛】本题考查的是勾股定理和三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.17、中位数.【解析】

参赛选手要想知道自己是否能进入前6名,只需要了解自己的成绩与全部成绩的中位数的大小即可.【详解】由于总共有12个人,且他们的分数互不相同,要判断是否进入前6名,只要把自己的成绩与中位数进行大小比较.故应知道中位数的多少.故答案为中位数.【点睛】本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.18、.【解析】

根据三角形中位线定理得到DE∥AB,DE=0.5AB=5,根据平行线的性质、角平分线的定义求出DF,计算即可.【详解】解:、分别是、的中点,,,,,平分,,,,,故答案为.【点睛】本题考查的是角平分线的定义、三角形中位线定理,掌握平行线的性质、角平分线的定义是解题的关键.三、解答题(共66分)19、(1)5,1;(2)芦苇的长度为13尺.【解析】

(1)直接利用题意结合图形得出各线段长;(2)利用勾股定理得出AG的长进而得出答案.【详解】(1)线段AF的长为5尺,线段EF的长为1尺;故答案为:5,1;(2)设芦苇的长度x尺,则图中AG=x,GF=x−1,AF=5,在Rt△AGF中,∠AFC=90∘,由勾股定理得AF+FG=AG.所以5+(x−1)=x,解得x=13,答:芦苇的长度为13尺.【点睛】此题考查勾股定理,解题关键在于得出AG的长.20、(1)证明见解析;(2).【解析】

(1)根据平行四边形的对边平行可以得到AB//CD,又AE//BD,可以证明四边形ABDE是平行四边形,所以AB=DE,故D是EC的中点;

(2)先求出是等边三角形,再求EF.【详解】(1)在平行四边形中,,且,又∵,∴四边形是平行四边形,∴,,即是的中点;(2)∵,∴是直角三角形又∵是的中点,∴,∵,∴,∴是等边三角形,∴,∴在中.【点睛】本题主要考查了平行四边形的性质与判定,直角三角形斜边上的中线等于斜边的一半以及等边三角形的判定,熟练掌握性质定理并灵活运用是解题的关键.21、(1)(x−12)米;(2)的值为20或1.【解析】

(1)由甲和乙为正方形,且该地长为x米,宽为12米,可得出丙的长,也是乙的边长;(2)由(1)求得丙的长,再求出丙的宽,即可得出丙的面积,由此列出方程,求解即可.【详解】解:(1)因为甲和乙为正方形,结合图形可得丙的长为:(x−12)米.同样乙的边长也为(x−12)米,故答案为:(x−12)米;(2)结合(1)得,丙的长为:(x−12)米,丙的宽为12−(x−12)=(24−x)米,所以丙的面积为:(x−12)(24−x),列方程得,(x−12)(24−x)=32解方程得x1=20,x2=1.答:的值为20或1.【点睛】本题考查了一元二次方程的应用,解题的关键是表示出有关的线段的长,难度不大.22、答案不唯一,详见解析【解析】

选择第一个与第二个,第一个与第三个,利用整式的加法运算法则计算,然后再利用提公因式法或平方差公式进行因式分解即可.【详解】情形一:情形二:【点睛】此题主要考查了多项式的计算,以及分解因式,关键是正确求出多项式的和,找出公因式.23、(1)900;(2)当两车出发4小时时相遇;(3)慢车的速度是75千米/时,快车的速度是150千米/时;(4)y=225x﹣900(4≤x≤6).【解析】

(1)根据已知条件和函数图象可以直接写出甲、乙两地之间的距离;(2)根据题意可以得到点B表示的实际意义;(3)根据图象和题意可以分别求出慢车和快车的速度;(4)根据题意可以求得点C的坐标,由图象可以得到点B的坐标,从而可以得到线段BC所表示的y与x之间的函数关系式,以及自变量x的取值范围.【详解】(1)由图象可得:甲、乙两地之间的距离为900千米.故答案为900;(2)图中点B的实际意义时当两车出发4小时时相遇;(3)由题意可得:慢车的速度为:900÷12=75,快车的速度为:(900﹣75×4)÷4=150,即慢车的速度是75千米/时,快车的速度是150千米/时;(4)由题可得:点C是快车刚到达乙地,∴点C的横坐标是:900÷150=6,纵坐标是:900﹣75×6=450,即点C的坐标为(6,450),设线段BC对应的函数解析式为y=kx+b.∵点B(4,0),点C(6,450),∴,得:,即线段BC所表示的y与x之间的函数关系式是y=225x﹣900(4≤x≤6).【点睛】本题考查了一次函数的应用,解答此类问题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答,注意最后要写出自变量x的取值范围.24、见解析【解析】试题分析:根据方位角的概念,得出∠BAO=60°,∠CAO=45°,由∠BAO=60°可得∠ABO=30°,进而可得AB的值,然后在Rt△ABO中由勾股定理可求出OB的值,(2)判断是否超速就是求BC的长,然后比较即可.解:(1)在Rt△AOB中,∵∠BAO=60°,∴∠ABO=30°,∴OA=AB.∵OA=100m,∴AB=200m.由勾股定理,得OB==100(m).在Rt△AOC中,∵∠CAO=45°,∴∠OCA=∠OAC=45°.∴OC=OA=100m.∴B(-100,0),C(100,0).(2)∵BC=BO+CO=(100+100)m,≈18>,∴这辆汽车超速了.25、(1),点坐标为,顶点的坐标为;(2)①最大值是,的坐标为,②的取值范围为或或.【解析】

(1)先利用对称轴公式x=,计算对称轴,即顶点坐标为(1,4),再将两点代入列二元一次方程组求出解析式;

(2)根据三角形的三边关系:可知P、C、D三点共线时|PC-PD|取得最大值,求出直线CD与x轴的交点坐标,就是此时点P的坐标;

(3)先把函数中的绝对值化去,可知,此函数是两个二次函数的一部分,分三种情况进行计算:①当线段PQ过点(0,3),即点Q与点C重合时,两图象有一个公共点,当线段PQ过点(3,0),即点P与点(3,0)重合时,两函数有两个公共点,写出t的取值;②线段PQ与当函数y=a|x|2-2a|x|+c(x≥0)时有一个公共点时,求t的值;③当线段PQ过点(-3,0),即点P与点(-3,0)重合时,线段PQ与当函数y=a|x|2-2a|x|+c(x<0)时也有一个公共点,则当t≤-3时,都满足条件;综合以上结论,得出t的取值.【详解】解:(1)∵,∴的对称轴为.∵人最大值为4,∴抛物线过点.得,解得.∴该二次函数的解析式为.点坐标为,顶点的坐标为.(2)①∵,∴当三点在一条直线上时,取得最大值.连接并延长交轴于点,.∴的最大值是.易得直线的方程为.把代入,得.∴此时对应的点的坐标为.②的解析式可化为设线段所在直线的方程为,将,的坐标代入,可得线段所在直线的方程为.(1)当线段过点,即点与点重合时,线段与函数的图像只有一个公共点,此时.∴当时,线段与函数的图像只有一个公

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论