云南省昆明市云南师范大实验中学2024届八年级下册数学期末综合测试模拟试题含解析_第1页
云南省昆明市云南师范大实验中学2024届八年级下册数学期末综合测试模拟试题含解析_第2页
云南省昆明市云南师范大实验中学2024届八年级下册数学期末综合测试模拟试题含解析_第3页
云南省昆明市云南师范大实验中学2024届八年级下册数学期末综合测试模拟试题含解析_第4页
云南省昆明市云南师范大实验中学2024届八年级下册数学期末综合测试模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省昆明市云南师范大实验中学2024届八年级下册数学期末综合测试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.关于一组数据:1,5,6,3,5,下列说法错误的是()A.平均数是4 B.众数是5 C.中位数是6 D.方差是3.22.二次根式有意义的条件是()A.x<2 B.x<﹣2 C.x≥﹣2 D.x≤23.若直线y=ax+b的图象经过点(1,5),则关于的方程的解为()A. B. C. D.4.如果点E、F、G、H分别是四边形ABCD四条边的中点,若EFGH为菱形,则四边形应具备的下列条件中,不正确的个数是()①一组对边平行而另一组对边不平行;②对角线互相平分;③对角线互相垂直;④对角线相等A.1个 B.2个 C.3个 D.4个5.如图,在平面直角坐标系中,▱MNEF的两条对角线ME,NF交于原点O,点F的坐标是(3,2),则点N的坐标为()A.(-3,-2) B.(-3,2) C.(-2,3) D.(2,3)6.某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A.80(1+x)2=100 B.100(1﹣x)2=80 C.80(1+2x)=100 D.80(1+x2)=1007.如图,在△ABC中,∠ACB=90°,CE⊥AB,垂足为E,点D是边AB的中点,AB=20,S△CAD=30,则DE的长度是()A.6 B.8 C. D.98.如图,在▱ABCD中,对角线AC、BD相交于点O,下列哪个条件不能判定▱ABCD是矩形的是()A.AC=BD B.OA=OB C.∠ABC=90° D.AB=AD9.下列结论中,矩形具有而菱形不一定具有的性质是()A.内角和为360° B.对角线互相平分 C.对角线相等 D.对角线互相垂直10.已知点P的坐标为(a,b)(a>0),点Q的坐标为(c,2),且|a-c|+=0,将线段PQ向右平移a个单位长度,其扫过的面积为24,那么a+b+c的值为()A.12 B.14 C.16 D.20二、填空题(每小题3分,共24分)11.体育张教师为了解本校八年级女生:“1分钟仰卧起坐”的达标情况,随机抽取了20名女生进行仰卧起坐测试.如图是根据测试结果绘制的频数分布直方图.如果这组数据的中位数是40次,那么仰卧起坐次数为40次的女生人数至少有__________人.12.如图,点,是的边,上的点,已知,,分别是,,中点,连接BE,FH,若BD=8,CE=6,,∠FGH=90°,则FH长为_______.13.若关于x的一元二次方程x²-2x+c=0没有实数根.则实数c取值范围是________14.方程=3的解是_____.15.化简;÷(﹣1)=______.16.如图,在菱形ABCD中,已知DE⊥AB,AE:AD=3:5,BE=2,则菱形ABCD的面积是_______.17.某楼梯如图所示,欲在楼梯上铺设红色地毯,已知这种地毯每平方米售价为30元,楼梯宽为2m,则购买这种地毯至少需要_____元.18.关于x的方程有增根,则m的值为_____三、解答题(共66分)19.(10分)定义:既相等又垂直的两条线段称为“等垂线段”,如图1,在中,,,点、分别在边、上,,连接、,点、、分别为、、的中点,且连接、.观察猜想(1)线段与“等垂线段”(填“是”或“不是”)猜想论证(2)绕点按逆时针方向旋转到图2所示的位置,连接,,试判断与是否为“等垂线段”,并说明理由.拓展延伸(3)把绕点在平面内自由旋转,若,,请直接写出与的积的最大值.20.(6分)如图,在平行四边形中,,点为的中点,连接并延长与的延长线相交于点,连接.(1)求证:;(2)求证:是的平分线.21.(6分)图1,图2是两张形状、大小完全相同的6×6方格纸,方格纸中的每个小长方形的边长为1,所求的图形各顶点也在格点上.(1)在图1中画一个以点,为顶点的菱形(不是正方形),并求菱形周长;(2)在图2中画一个以点为所画的平行四边形对角线交点,且面积为6,求此平行四边形周长.22.(8分)已知y+6与x成正比例,且当x=3时,y=-12,求y与x的函数关系式.23.(8分)如图,等腰Rt△ABC中,BA=BC,∠ABC=90°,点D在AC上,将△ABD绕点B沿顺时针方向旋转90°后,得到△CBE(1)求∠DCE的度数;(2)若AB=4,CD=3AD,求DE的长.24.(8分)图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形.(2)若DE=4cm,∠EBC=60°,求菱形BCFE的面积。25.(10分)解方程(本题满分8分)(1)(x-5)2=2(5-x)(2)2x2-4x-6=0(用配方法);26.(10分)关于x的一元二次方程有两个不等实根,.(1)求实数k的取值范围;(2)若方程两实根,满足,求k的值.

参考答案一、选择题(每小题3分,共30分)1、C【解析】

解:A.这组数据的平均数是(1+5+6+3+5)÷5=4,故本选项正确;B.5出现了2次,出现的次数最多,则众数是3,故本选项正确;C.把这组数据从小到大排列为:1,3,5,5,6,最中间的数是5,则中位数是5,故本选项错误;D.这组数据的方差是:[(1﹣4)2+(5﹣4)2+(6﹣4)2+(3﹣4)2+(5﹣4)2]=3.2,故本选项正确;故选C.考点:方差;算术平均数;中位数;众数.2、C【解析】

根据被开方数大于等于0列式计算即可得解.【详解】由题意得:x+1≥0,解得:x≥﹣1.故选C.【点睛】本题考查了的知识点为:二次根式有意义的条件是被开方数是非负数.3、C【解析】

将点(1,5)代入函数解析式,即可得出答案.【详解】∵直线y=ax+b经过点(1,5),∴有5=a+b从而有方程ax+b=5的解为x=1故选C.【点睛】本题考查的是一次函数,比较简单,需要熟练掌握一次函数与一元一次方程的关系并灵活运用.4、C【解析】

因为四边相等才是菱形,因为E、F、G、H是四边形ABCD四条边的中点,那么菱形的四条边都是对角线的中位线,所以对角线一定要相等.【详解】解:连接AC,BD,∵四边形ABCD中,E、F、G、H分别是四条边的中点,要使四边形EFGH为菱形,∴EF=FG=GH=EH,∵FG=EH=DB,HG=EF=AC,∴要使EH=EF=FG=HG,∴BD=AC,∴四边形ABCD应具备的条件是BD=AC,故选:C.【点睛】此题主要考查了三角形中位线的性质以及菱形的判定方法,正确运用菱形的判定定理是解决问题的关键.5、A【解析】对于平行四边形MNEF,点N的对称点即为点F,所以点F到X轴的距离为2,到Y轴的距离为1.即点N到X、Y轴的距离分别为2、1,且点N在第三象限,所以点N的坐标为(—1,—2)6、A【解析】

利用增长后的量=增长前的量×(1+增长率),设平均每次增长的百分率为x,根据“从80吨增加到100吨”,即可得出方程.【详解】由题意知,蔬菜产量的年平均增长率为x,根据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1+x)吨,2018年蔬菜产量为80(1+x)(1+x)吨,预计2018年蔬菜产量达到100吨,即:80(1+x)2=100,故选A.【点睛】本题考查了一元二次方程的应用(增长率问题).解题的关键在于理清题目的含义,找到2017年和2018年的产量的代数式,根据条件找准等量关系式,列出方程.7、B【解析】

根据直角三角形斜边中线的性质求得CD,根据三角形面积求得CE,然后根据勾股定理即可求得DE.【详解】解:∵在△ABC中,∠ACB=90°,点D是边AB的中点,AB=20,

∴CD=AD=BD=10,

∵S△CAD=30,CE⊥AB,垂足为E,

∴S△CAD=AD•CE=30

∴CE=6,

∴DE=故选B.【点睛】本题考查了直角三角形斜边的中线等于斜边的一半,解题的关键是掌握这个性质的运用.8、D【解析】

根据平行四边形的性质,矩形的判定方法即可一一判断即可.【详解】解:∵四边形ABCD是平行四边形,∵AC=BD,∴ABCD是矩形,故A正确;∵四边形ABCD是平行四边形,∴AO=OC,BO=OD,∵OA=OB,∴AC=BD,∴ABCD是矩形,故B正确;∵四边形ABCD是平行四边形,∵∠ABC=90°,∴ABCD是矩形,故C正确;∵四边形ABCD是平行四边形,∵AB=AD,∴ABCD是菱形,故D错误.故选:D.【点睛】本题考查了矩形的判定,平行四边形的性质,熟练掌握矩形的判定定理是解题的关键.9、C【解析】

矩形与菱形相比,菱形的四条边相等、对角线互相垂直;矩形四个角是直角,对角线相等,由此结合选项即可得出答案.【详解】A、菱形、矩形的内角和都为360°,故本选项错误;B、对角互相平分,菱形、矩形都具有,故本选项错误;C、对角线相等菱形不具有,而矩形具有,故本选项正确D、对角线互相垂直,菱形具有而矩形不具有,故本选项错误,故选C.【点睛】本题考查了菱形的性质及矩形的性质,熟练掌握矩形的性质与菱形的性质是解题的关键.10、C【解析】

有非负数的性质得到a=c,b=8,,PQ∥y轴,由于其扫过的图形是矩形可求得,代入即可求得结论.【详解】解:|a-c|+=0,∴a=c,b=8,,PQ∥y轴,∴PQ=8-2=6,将线段PQ向右平移a个单位长度,其扫过的图形是边长为a和6的矩形,,∴a=4,∴c=4,∴a+b+c=4+8+4=16;故选:C.【点睛】本题主要考查了非负数的性质,坐标的平移,矩形的性质,能根据点的坐标判断出PQ∥y轴,进而求得PQ是解题的关键.二、填空题(每小题3分,共24分)11、1【解析】

根据中位数的定义求解可得.【详解】解:∵这20个数据的中位数是第10、11个数据的平均数,且第10个、11个全部位于第三组(40≤x<10)内,∴第10个、11个数据均为40,∵小于40的有6个,∴第7、8、9、10、11个数据一定为40,∴仰卧起坐次数为40次的女生人数至少有1人,故答案为:1.【点睛】本题主要考查频数分布直方图和中位数,解题的关键是掌握中位数的概念.12、【解析】

利用三角形中位线求得线段FG、GH;再利用勾股定理即可求出FH的长.【详解】解:∵,,分别是,,中点∴∵∠FGH=90°∴为直角三角形根据勾股定理得:故答案为:5【点睛】本题考查了三角形中位线定理以及勾股定理,熟练掌握三角形中位线定理是解答本题的关键.13、【解析】

利用判别式的意义得到,然后解不等式即可.【详解】解:根据题意得:,解得:,故答案为:【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.14、1【解析】

根据转化的思想,把二次根式方程化成整式方程,先把移项到右边,再两边同时平方把化成整式,进化简得到=1,再两边进行平方,得x=1,从而得解.【详解】移项得,=3﹣,两边平方得,x+3=9+x﹣6,移项合并得,6=6,即:=1,两边平方得,x=1,经检验:x=1是原方程的解,故答案为1.【点睛】本题考查了学生对开方与平方互为逆运算的理解,利用转化的思想把二次根式方程化为一元一次方程是解题的关键.15、-【解析】

直接利用分式的混合运算法则即可得出.【详解】原式,,,.故答案为.【点睛】此题主要考查了分式的化简,正确掌握运算法则是解题关键.16、20【解析】

先由线段比求出AE,AB,AD,再由勾股定理求出DE,根据面积公式再求结果.【详解】因为,四边形ABCD是菱形,所以,AD=AB,因为,AE:AD=3:5,所以,AE:AB=3:5,所以,AE:BE=3:2,因为,BE=2,所以,AE=3,AB=CD=5,所以,DE=,所以,菱形ABCD的面积是AB∙DE=5×4=20故答案为20【点睛】本题考核知识点:菱形性质.解题关键点:由勾股定理求出高.17、1【解析】解:已知直角三角形的一条直角边是3m,斜边是5m,根据勾股定理得到:水平的直角边是4m,地毯水平的部分的和是水平边的长,竖直的部分的和是竖直边的长,则购买这种地毯的长是3m+4m=7m,则面积是14m2,价格是14×30=1元.故答案为1.18、-1【解析】

增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出m的值.【详解】方程两边都乘(x−3),得2−x−m=2(x−3)∵原方程增根为x=3,∴把x=3代入整式方程,得2−3−m=0,解得m=−1.故答案为:−1.【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.三、解答题(共66分)19、(1)是;(2)是,理由详见解析;(3)49【解析】

(1)根据题意,利用等腰三角形和三角形中位线定理得出,∠MPN=90°判定即可;(2)由旋转和三角形中位线的性质得出,再由中位线定理进行等角转换,得出∠MPN=90°,即可判定;(3)由题意,得出最大时,与的积最大,点在的延长线上,再由(1)(2)结论,得出与的积的最大值.【详解】(1)是;∵,∴DB=EC,∠ADE=∠AED=∠B=∠ACB∴DE∥BC∴∠EDC=∠DCB∵点、、分别为、、的中点∴PM∥EC,PN∥BD,∴,∠DPM=∠DCE,∠PNC=∠DBC∵∠DPN=∠PNC+∠DCB∴∠MPN=∠DPM+∠DPN=∠ACD+∠DCB+∠B=180°-90°=90°∴线段与是“等垂线段”;(2)由旋转知∵,∴≌()∴,利用三角形的中位线得,,∴由中位线定理可得,∴,∵∴∵∴∴∴与为“等垂线段”;(3)与的积的最大值为49;由(1)(2)知,∴最大时,与的积最大∴点在的延长线上,如图所示:∴∴∴.【点睛】此题主要考查等腰三角形以及三角形中位线的性质,熟练掌握,即可解题.20、(1)见解析;(2)见解析;【解析】

(1)根据平行四边形的性质及全等三角形的判定定理即可证明;(2)根据全等三角形的性质及等腰三角形三线合一即可求解.【详解】(1)∵四边形是平行四边形,∴,∴.又∵为中点,∴.在和中,∴.(2)由(1)知,∴.∵四边形是平行四边形∴,..又∴.即.∴是等腰三角形∵.∴是边上的中线.由等腰三角形三线合一性质,得是的平分线.【点睛】此题主要考查平行四边形的性质,解题的关键是熟知全等三角形的判定与性质、等腰三角形三线合一.21、(1)图见解析;菱形周长为;(2)图见解析;平行四边形的周长为6+2.【解析】

(1)以AB为一边,根据菱形的四条边相等进行作图即可,求出AB的长,即可得到菱形的周长;(2)根据点A为所画的平行四边形对角线交点且面积为6进行作图即可,然后再利用勾股定理求平行四边形的周长即可.【详解】解:(1)如图所示,菱形ABCD即为所求,∵AB=,∴菱形ABCD的周长=;(2)如图所示,平行四边形BCDE即为所求,∵BC=3,CD=,∴平行四边形BCDE的周长=2×(3+)=6+2.【点睛】本题主要考查了菱形的性质、平行四边形的性质以及勾股定理,解题时首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.22、y=﹣2x﹣1.【解析】试题分析:先根据y+1与x成正比例关系,假设函数解析式,再根据已知的一对对应值,求得系数k即可.解:∵y+1与x成正比例,∴设y+1=kx(k≠0),∵当x=3时,y=﹣12,∴﹣12+1=3k,解得k=﹣2∴y+1=﹣2x,∴函数关系式为y=﹣2x﹣1.23、解:(1)90°;(2)2【解析】试题分析:(1)首先由等腰直角三角形的性质求得∠BAD、∠BCD的度数,然后由旋转的性质可求得∠BCE的度数,故此可求得∠DCE的度数;(2)由(1)可知△DCE是直角三角形,先由勾股定理求得AC的长,然后依据比例关系可得到CE和DC的长,最后依据勾股定理求解即可.试题解析:(1)∵△ABCD为等腰直角三角形,∴∠BAD=∠BCD=45°.由旋转的性质可知∠BAD=∠BCE=45°.∴∠DCE=∠BCE+∠BCA=45°+45°=90°.(2)∵BA=BC,∠ABC=90°,∴AC=.∵CD=3AD,∴AD=,DC=3.由旋转的性质可知:AD=EC=.∴DE=.考点:旋转的性质.24、(1)证明见解析;

(2)菱形的面积为4×2=8.【解析】

(1)从所给的条件可知,DE是△ABC中位线,所以DE∥BC且2DE=BC,所以BC和EF平行且相等,所以四边形BCFE是平行四边形,又因为BE=FE,所以是菱形;(2)因为∠EBC为60°,所以菱形的边长也为4,求出菱形的高面积就可求.【详解】(1)证明:∵D、E分别是AB、AC的中点,

∴DE∥BC且2DE=BC,

又∵BE=2DE,EF=BE,

∴EF=BC,EF∥BC,

∴四边形BCFE是平行四边形,

又∵BE=FE,

∴四边形BCFE是菱形;

(2)∵∠EBC=60°,

∴△EBC是等边三角形,

∴菱形的边长为4,高为2,

∴菱形的面积为4×

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论